Abstract

We have used positron emission tomography (PET) to identify the neural substrate of two major cognitive components of working memory (WM), maintenance and manipulation of a single elementary visual attribute, i.e., the orientation of a grating presented in central vision. This approach allowed us to equate difficulty across tasks and prevented subjects from using verbal strategies or vestibular cues. Maintenance of orientations involved a distributed fronto-parietal network, that is, left and right lateral superior frontal sulcus (SFSl), bilateral ventrolateral prefrontal cortex (VLPFC), bilateral precuneus, and right superior parietal lobe (SPL). A more medial superior frontal sulcus region (SFSm) was identified as being instrumental in the manipulative operation of updating orientations retained in the WM. Functional connectivity analysis revealed that orientation WM relies on a coordinated interaction between frontal and parietal regions. In general, the current findings confirm the distinction between maintenance and manipulative processes, highlight the functional heterogeneity in the prefrontal cortex (PFC), and suggest a more dynamic view of WM as a process requiring the coordinated interaction of anatomically distinct brain areas.

This content is only available as a PDF.