In the present study, subjects selectively attended to the color of checkerboards in a feature-based attention paradigm. Induced gamma band responses (GBRs), the induced alpha band, and the event-related potential (ERP) were analyzed to uncover neuronal dynamics during selective feature processing. Replicating previous ERP findings, the selection negativity (SN) with a latency of about 160 msec was extracted. Furthermore, and similarly to previous EEG studies, a gamma band peak in a time window between 290 and 380 msec was found. This peak had its major energy in the 55to 70-Hz range and was significantly larger for the attended color. Contrary to previous human induced gamma band studies, a much earlier 40to 50-Hz peak in a time window between 160 and 220 msec after stimulus onset and, thus, concurrently to the SN was prominent with significantly more energy for attended as opposed to unattended color. The induced alpha band (9.8–11.7 Hz), on the other hand, exhibited a marked suppression for attended color in a time window between 450 and 600 msec after stimulus onset. A comparison of the time course of the 40to 50-Hz and 55to 70-Hz induced GBR, the induced alpha band, and the ERP revealed temporal coincidences for changes in the morphology of these brain responses. Despite these similarities in the time domain, the cortical source configuration was found to discriminate between induced GBRs and the SN. Our results suggest that large-scale synchronous high-frequency brain activity as measured in the human GBR play a specific role in attentive processing of stimulus features.

This content is only available as a PDF.