It is well documented that the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC) are intensively involved in conflict control. However, it remains unclear how these “executive” brain regions will act when the conflict control process interacts with spatial attentional orienting. In the classical spatial cueing paradigm [Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X (pp. 531–556). Hillsdale, NJ: Erlbaum], response to a target is delayed when it appears at the cued location compared with at the uncued location, if the time interval between the cue and the target is greater than 300 msec. This effect of inhibition of return (IOR) can alter the resolution of Stroop conflict such that the Stroop interference effect disappears at the cued (inhibited) location [Vivas, A. B., & Fuentes, L. J. Stroop interference is affected in inhibition of return. Psychonomic Bulletin and Review, 8, 315–323, 2001]. In this event-related functional magnetic resonance study, we investigate the differential neural mechanisms underlying interactions between pre-response interference, response interference, and spatial orienting. Two types of Stroop words [incongruent response-eligible words (IE), incongruent response-ineligible words (II)] and neutral words were presented either at the cued or uncued location. The significant pre-response interference at the uncued location activated the left rostral ACC as compared with at the cued location. Moreover, although the IE words which have conflicts at both pre-response and response levels did not cause significant behavioral interference at the cued location, they activated the left DLPFC as compared with at the uncued location. Furthermore, neutral words showed significant IOR effects behaviorally, and they activated the left frontal eye field (FEF) at the uncued location relative to the cued location. These results suggest that the left rostral ACC is involved in the interaction between pre-response conflict and IOR, whereas the left DLPFC is involved in the interaction between response conflict and IOR. Moreover, the FEF is involved in shifting attentional focus to novel locations during spatial search.

This content is only available as a PDF.