Abstract

A core brain network has been proposed to underlie a number of different processes, including remembering, prospection, navigation, and theory of mind [Buckner, R. L., & Carroll, D. C. Self-projection and the brain. Trends in Cognitive Sciences, 11, 49–57, 2007]. This purported network—medial prefrontal, medial-temporal, and medial and lateral parietal regions—is similar to that observed during default-mode processing and has been argued to represent self-projection [Buckner, R. L., & Carroll, D. C. Self-projection and the brain. Trends in Cognitive Sciences, 11, 49–57, 2007] or scene-construction [Hassabis, D., & Maguire, E. A. Deconstructing episodic memory with construction. Trends in Cognitive Sciences, 11, 299–306, 2007]. To date, no systematic and quantitative demonstration of evidence for this common network has been presented. Using the activation likelihood estimation (ALE) approach, we conducted four separate quantitative meta-analyses of neuroimaging studies on: (a) autobiographical memory, (b) navigation, (c) theory of mind, and (d) default mode. A conjunction analysis between these domains demonstrated a high degree of correspondence. We compared these findings to a separate ALE analysis of prospection studies and found additional correspondence. Across all domains, and consistent with the proposed network, correspondence was found within the medial-temporal lobe, precuneus, posterior cingulate, retrosplenial cortex, and the temporo-parietal junction. Additionally, this study revealed that the core network extends to lateral prefrontal and occipital cortices. Autobiographical memory, prospection, theory of mind, and default mode demonstrated further reliable involvement of the medial prefrontal cortex and lateral temporal cortices. Autobiographical memory and theory of mind, previously studied as distinct, exhibited extensive functional overlap. These findings represent quantitative evidence for a core network underlying a variety of cognitive domains.

INTRODUCTION

A single core network has been proposed to underlie a number of cognitive domains previously seen as distinct, specifically: (a) remembering, (b) prospection, (c) spatial navigation, and (d) theory of mind (Buckner & Carroll, 2007). The network of brain regions hypothesized to be common to these domains comprise the fronto-polar and anterior midline structures in addition to the medial-temporal lobe, medial parietal, and a lateral posterior parietal region, the temporo-parietal junction. These authors believe that the core network may support self-projection: the ability to mentally project oneself from the present moment into a simulation of another time, place, or perspective. Additionally, the default-mode network (Mazoyer et al., 2001; Raichle et al., 2001; Shulman et al., 1997)—the set of brain areas typically found to be associated with stimulus-independent thought (Mason et al., 2007; McGuire, Paulesu, Frackowiak, & Frith, 1996)—may be similar in composition, perhaps indicating that this activation pattern signals a shift from the processing of external stimuli to internal and imagined situations (Buckner & Carroll, 2007).

This intriguing proposal has generated a great deal of interest, evidenced, in part, by a prompt response arguing that scene construction, and not self-projection, provides a more specific and empirically supported account of the core network (Hassabis & Maguire, 2007). Constructing a complex and coherent scene involves the retrieval and integration of information toward the visualization of a spatial context that can be maintained and manipulated. The position of Hassabis and Maguire (2007) is supported by the observation that the pattern identified by Buckner and Carroll (2007) is also observed when individuals imagine fictitious circumstances that may have no relation to the self or time (Hassabis, Kumaran, & Maguire, 2007; Hassabis & Maguire, 2007).

Missing from both proposals is concrete evidence that a reliable pattern of brain activity is observed across these domains. Both groups (Buckner & Carroll, 2007; Hassabis & Maguire, 2007) rely upon a narrative-based review to present evidence, citing studies suggestive of a similar network rather than employing a systematic and quantitative approach. Before any debate regarding the explanatory depth of self-projection or scene construction can take place, it is necessary to demonstrate that a core network truly is common to all these domains. Applying a systematic, extensive, and quantitative meta-analytic approach that can properly evaluate the evidence for this hypothesized neural system is a necessary undertaking. The domains thought to reflect this common system are described in brief below along with their possible relation to self-projection or scene construction.

Autobiographical Memory

Remembering the past appears to be related to both self-projection and scene construction, especially upon consideration of the theory of autonoetic awareness (Wheeler, Stuss, & Tulving, 1997; Tulving, 1985). According to this theory, declarative memory is based on two systems that correspond to distinct subjective states of awareness: noetic and autonoetic. Noetic awareness involves the recall of knowledge or facts, and supports semantic memory. Autonoetic awareness supports the remembering of contextual and subjective associations from the original experience or episodic memory. Episodic recollection of personal events from one's own life is referred to as autobiographical memory. During autobiographical recall, spatially and temporally bound information is retrieved and the relevant scene vividly reconstructed. This is accompanied by a feeling of reminiscence, where the self being remembered is the same self engaged in recollection, and the re-experiencing of these memories may elicit strong emotions. Remembering thus involves a process of projecting the self back through time, as well as constructing a past scene and experience. Autonoetic awareness, however, may also be applied in a more flexible fashion to other domains such as imagining the future.

Prospection

Imagining ourselves in the future, or prospection, plays an integral role in planning, allowing one to plot strategic behavior in order to engage in successful goal pursuit (Levine, Freedman, Dawson, Black, & Stuss, 1999). Through the mental simulation of possible futures and their outcomes, we can avoid negative ends and maximize positive ones. A number of theorists have hypothesized that remembering and future-oriented thinking may reflect a single underlying process (Atance & O'Neill, 2001; Suddendorf & Corballis, 1997; Wheeler et al., 1997). This idea has only recently been supported by empirical data. In one study, for example, the temporal distribution of self-generated, probable future events (the “intention function”) maps almost identically onto the distribution of recalled past events (the “retention function”); this close similarity replicates across individuals at different points in their lifespan (Spreng & Levine, 2006). Other researchers have shown that the descriptions of both past and future events show decreasing phenomenological richness with increasing time from the present (D'Argembeau & Van der Linden, 2004), and that the episodic specificity of past and future events declines with age in an equivalent fashion (Addis, Wong, & Schacter, 2008). It is thus likely that a shared mechanism for remembering and prospection exists, and reflects a shared neural substrate.

Navigation

Topographical orientation involves the capacity to navigate spatial environments (Maguire, 1997), largely by imagining one's current position, the desired endpoint, and possible routes using both egocentric and allocentric perspectives. The latter perspective involves considering the relation between landmarks irrespective of an individual's viewpoint (Aguirre, Zarahn, & D'Esposito, 1998). This may involve either projecting the “mind's eye” into a perspective separate from the immediate environment, or the construction of a scene or map of our environs.

Theory of Mind

A key aspect of successful social navigation involves our possession of a theory of mind, that is, an understanding that the behavior of others is motivated by internal states such as thoughts, emotions, and beliefs (a.k.a. mentalizing; Carruthers & Smith, 1996). Understanding others, in part, involves the taking of another's perspective in order to predict their actions and reactions (Garfield, Peterson, & Perry, 2001). Simulation-based accounts of theory of mind are broadly consistent with the idea that self-projection is an important aspect of mentalizing, proposing that we take on the mindset of others and use our self to simulate their experience in order to understand them (Blakemore & Decety, 2001; Carruthers & Smith, 1996; cf. Stich & Nichols, 1992 for a propositional account). In constructing simulations of actors' potential actions and reactions, we may employ self-projection or perhaps construct imaginary scenes of potential situations.

Default Mode

The pattern of brain activation observed in participants during rest conditions (Mazoyer et al., 2001; Shulman et al., 1997) has been called the default mode of brain function (Raichle et al., 2001) and may represent stimulus-independent thought or mind-wandering (Mason et al., 2007). Driven not by attention to the external environment, but an internal mode of cognition, the default mode may set the stage for self-projection or scene construction by enabling a switch in perspective from the external to the internal (Gusnard, Akbudak, Shulman, & Raichle, 2001, see also Raichle & Gusnard, 2005).

The Current Study

The aim of the present study is to assess the correspondence of neural activations across multiple studies for autobiographical memory, prospection, navigation, theory of mind, and default mode using the activation likelihood estimation (ALE) approach to quantitative meta-analysis for neuroimaging data (Laird, Fox, et al., 2005; Turkeltaub, Eden, Jones, & Zeffiro, 2002). We employed the ALE approach to reveal statistically significant concordance of activated voxels across numerous experiments for each domain while controlling for chance clustering. By seeking concordance at the voxel level, ALE tests for statistically reliable clustering of activations in standardized locations, avoiding spatial distinction errors and problematic incongruence of labeling across studies that can befall tabular meta-analytic approaches and narrative-based reviews. A subsequent conjunction analysis can then assess correspondence across domains by identifying where clusters from different domains either directly overlap or converge within brain structures.

To date, six neuroimaging studies have explicitly examined prospection (Botzung, Denkova, & Manning, 2008; D'Argembeau, Xue, Lu, Van der Linden, & Bechara, 2008; Addis, Wong, & Schacter, 2007; Sharot, Riccardi, Raio, & Phelps, 2007; Szpunar, Watson, & McDermott, 2007; Okuda et al., 2003). Because of this small number of studies, prospection was not assessed in the conjunction analysis. However, brain regions reliably activated by prospection were compared with the other domains.

METHODS

Selection of Studies

Studies for autobiographical memory, navigation, theory of mind, and default mode were selected using a systematic search process. Peer-reviewed articles published in English between January 1985 and June 2007 were selected from the search results of three separate databases: (1) PsycInfo, (2) Medline, and (3) Science Citation Index. Keyword searches were conducted using the following terms: (1) “neuroimaging” <OR> “fMRI” <OR> “PET,” and the domain-specific terms (2i) “autobiographical memory,” (2ii) “navigation,” (2iii) “theory of mind” <OR> “mentalizing” <OR> “mindreading,” and (2iv) “default mode” <OR> “default network” <OR> “default state” <OR> “stimulus-independent thought.” As a result, 117 unique papers were found on autobiographical memory, 142 for navigation, 135 for theory of mind, and 118 for default mode. Theoretical papers and reviews were excluded, as were studies that did not provide data on nonclinical samples (e.g., Castelli, Frith, Happe, & Frith, 2002), studies that did not report activation foci as 3-D coordinates in stereotaxic space (e.g., Berthoz, 1997), or those that used “rest” or “fixation” as a control condition (which effectively controlled for default mode, preventing an examination of overlap with stimulus-independent thought; e.g., Cabeza et al., 2004; Platek, Keenan, Gallup, & Mohamed, 2004). For studies containing multiple independent samples, all appropriate data were included (e.g., Walter et al., 2004). The reference lists of these papers were searched for additional studies that fit these criteria. Domain-specific exclusions are described below.

Autobiographical memory papers that did not directly examine the retrieval of an autobiographical memory were excluded (e.g., episodic or semantic memory tasks; Sugiura et al., 2007), or those that employed another type of autobiographical memory as a contrast condition (e.g., recent vs. remote; Maguire & Frith, 2003a; or sad vs. happy, Markowitsch, Vandekerckhove, Lanfermann, & Russ, 2003; see Svoboda, McKinnon, & Levine, 2006 for a meta-analysis examining autobiographical memory). In total, 19 appropriate studies were included (Table 1).

Table 1. 

Autobiographical Memory Data Sources

Study
Task
Comparison Task
Modality
n
Foci
Comments
Addis, Moscovitch, Crawley, & McAndrews (2004Cued recall from prescan interview Sentence completion, size discrimination fMRI 14 16  
Andreasen et al. (1995Described personal past events SMR PET 13  
Denkova, Botzung, & Manning (2006Cued recall using famous names SMR fMRI 12 15  
Denkova, Botzung, Scheiber, & Manning (2006Cued recall using old photos SMR fMRI 10 26  
Fink et al. (1996Listening to AB information Listening to stranger's information PET  
Gilboa, Winocur, Grady, Hevenor, & Moscovitch (2004Cued recall using photos of self Imagined event from stranger's photo fMRI  
Graham, Lee, Brett, & Patterson (2003Cued recall using concepts (nouns) SMR PET 24 10  
Greenberg et al. (2005Cued recall using preassigned cues SMR fMRI 11 18  
Levine et al. (2004Cued recall using AB audio recordings PSK, SMR, other's recordings fMRI 14  
Maddock, Garrett, & Buonocore (2001Cued recall using familiar names SMR fMRI 24  
Maguire & Frith (2003bTrue/False judgments for AB sentences SMR fMRI 12 young adults 
ibid. True/False judgments for AB sentences Listening to words, syllable counting fMRI 12 older adults 
Maguire & Mummery (1999True/False judgments for AB sentences Listening to words, syllable counting PET  
Maguire, Mummery, & Buchel (2000True/False judgments for AB sentences Listening to words, syllable counting fMRI  
Markowitsch et al. (2000Listening to AB information Listened to fictitious information PET  
Piefke, Weiss, Zilles, Markowitsch, & Fink (2003Cued recall using AB sentences Reading fMRI 20 18  
Rekkas & Constable (2005Cued recall for recent past SMR fMRI 12 24  
Tsukiura et al. (2003Cued recall for recent past SMR PET  
Vandekerckhove, Markowitsch, Mertens, & Woermann (2005Cued recall using AB sentences Item visualization fMRI 16 18  
Viard et al. (2007Cued recall using AB sentences Letter detection fMRI 12 older adults 
   total 228 249  
Study
Task
Comparison Task
Modality
n
Foci
Comments
Addis, Moscovitch, Crawley, & McAndrews (2004Cued recall from prescan interview Sentence completion, size discrimination fMRI 14 16  
Andreasen et al. (1995Described personal past events SMR PET 13  
Denkova, Botzung, & Manning (2006Cued recall using famous names SMR fMRI 12 15  
Denkova, Botzung, Scheiber, & Manning (2006Cued recall using old photos SMR fMRI 10 26  
Fink et al. (1996Listening to AB information Listening to stranger's information PET  
Gilboa, Winocur, Grady, Hevenor, & Moscovitch (2004Cued recall using photos of self Imagined event from stranger's photo fMRI  
Graham, Lee, Brett, & Patterson (2003Cued recall using concepts (nouns) SMR PET 24 10  
Greenberg et al. (2005Cued recall using preassigned cues SMR fMRI 11 18  
Levine et al. (2004Cued recall using AB audio recordings PSK, SMR, other's recordings fMRI 14  
Maddock, Garrett, & Buonocore (2001Cued recall using familiar names SMR fMRI 24  
Maguire & Frith (2003bTrue/False judgments for AB sentences SMR fMRI 12 young adults 
ibid. True/False judgments for AB sentences Listening to words, syllable counting fMRI 12 older adults 
Maguire & Mummery (1999True/False judgments for AB sentences Listening to words, syllable counting PET  
Maguire, Mummery, & Buchel (2000True/False judgments for AB sentences Listening to words, syllable counting fMRI  
Markowitsch et al. (2000Listening to AB information Listened to fictitious information PET  
Piefke, Weiss, Zilles, Markowitsch, & Fink (2003Cued recall using AB sentences Reading fMRI 20 18  
Rekkas & Constable (2005Cued recall for recent past SMR fMRI 12 24  
Tsukiura et al. (2003Cued recall for recent past SMR PET  
Vandekerckhove, Markowitsch, Mertens, & Woermann (2005Cued recall using AB sentences Item visualization fMRI 16 18  
Viard et al. (2007Cued recall using AB sentences Letter detection fMRI 12 older adults 
   total 228 249  

AB = autobiographical; SMR = semantic memory retrieval; PSK = personal semantic knowledge; fMRI = functional magnetic resonance imaging; PET = positron emission tomography; ROI = region of interest.

A total of 13 studies were included for the navigation domain once studies that did not involve the retrieval of allocentric or egocentric spatial information were excluded (Table 2). Studies that examined encoding were not included in the present study because the process of encoding necessarily involves attention to the present environment (e.g., spatial exploration; Maguire, Frackowiak, & Frith, 1996). Studies tapping the retrieval of spatial location (e.g., Harrison, Duggins, & Friston, 2006; Parslow et al., 2004) were judged not to reflect navigation from one point to another (i.e., wayfinding) and were therefore excluded.

Table 2. 

Navigation Data Sources

Study
Task
Comparison Task
Modality
n
Foci
Comments
Avila et al. (2006Hometown-walking task Number counting fMRI 12 11  
Ghaem et al. (1997Mental simulation of routes Mental visualization of landmarks PET  
Hartley, Maguire, Spiers, & Burgess (2003Wayfinding in VE Trail following in VE fMRI 16  
Iaria, Chen, Guariglia, Ptito, & Petrides (2007Wayfinding in VE Trail following in VE fMRI 19  
Jordan, Schadow, Wuestenberg, Heinze, & Jancke (2004Wayfinding in VE PM, cued route, AV in VE fMRI 15  
Kumaran & Maguire (2005MN between friends' houses Social relational task fMRI 18  
Maguire, Frackowiak, & Frith (1997Mental simulation of routes Number repetition PET 11 11  
Maguire et al. (1998Wayfinding in VE Trail following in VE PET 10 10  
Mayes, Montaldi, Spencer, & Roberts (2004MN of newly learned route Recall newly learned word definition fMRI  
Mellet et al. (2002Mental simulation of routes Word pair counting PET 12  
Pine et al. (2002Wayfinding in VE Trail following in VE fMRI 20 27 10 adults, 10 adolescents 
Rosenbaum, Ziegler, Winocur, Grady, & Moscovitch (2004Mental simulation of routes Vowel counting fMRI 10  
Spiers & Maguire (2006aCustomer-driven route planning in VE Coasting fMRI 20 13  
   total 154 151  
Study
Task
Comparison Task
Modality
n
Foci
Comments
Avila et al. (2006Hometown-walking task Number counting fMRI 12 11  
Ghaem et al. (1997Mental simulation of routes Mental visualization of landmarks PET  
Hartley, Maguire, Spiers, & Burgess (2003Wayfinding in VE Trail following in VE fMRI 16  
Iaria, Chen, Guariglia, Ptito, & Petrides (2007Wayfinding in VE Trail following in VE fMRI 19  
Jordan, Schadow, Wuestenberg, Heinze, & Jancke (2004Wayfinding in VE PM, cued route, AV in VE fMRI 15  
Kumaran & Maguire (2005MN between friends' houses Social relational task fMRI 18  
Maguire, Frackowiak, & Frith (1997Mental simulation of routes Number repetition PET 11 11  
Maguire et al. (1998Wayfinding in VE Trail following in VE PET 10 10  
Mayes, Montaldi, Spencer, & Roberts (2004MN of newly learned route Recall newly learned word definition fMRI  
Mellet et al. (2002Mental simulation of routes Word pair counting PET 12  
Pine et al. (2002Wayfinding in VE Trail following in VE fMRI 20 27 10 adults, 10 adolescents 
Rosenbaum, Ziegler, Winocur, Grady, & Moscovitch (2004Mental simulation of routes Vowel counting fMRI 10  
Spiers & Maguire (2006aCustomer-driven route planning in VE Coasting fMRI 20 13  
   total 154 151  

MN = mental navigation; VE = virtual environment; PM = passive movement; AV = attentive viewing.

In the case of theory of mind, studies were excluded if they did not involve a basic theory-of-mind task but reported a more narrow investigation (e.g., examination of the role of self–other similarity; Mitchell, Macrae, & Banaji, 2006), or if the task did not clearly involve inferring the mental state of another (e.g., hearing one's own name; Kampe, Frith, & Frith, 2003). Additionally, papers with emotional stimuli (e.g., emotional faces or disturbing pictures; Dolan & Frith, 2004) were excluded in the interests of drawing a more homogeneous sample. In the end, a total of 50 studies met the criteria for inclusion in the theory-of-mind meta-analysis. Due to the relatively large number of foci (compared to other domains) and potential inflation of cluster size as a result (Laird, Fox, et al., 2005), a randomly determined (via random number generation) subsample of studies was selected that approximately matched the number of foci for this domain with the number of foci in the next most extensive domain (i.e., autobiographical memory). A total of 30 theory-of-mind studies were included (Table 3).

Table 3. 

Theory-of-Mind Data Sources

Study
Task
Comparison Task
Modality
n
Foci
Comments
Aichhorn, Perner, Kronbichler, Staffen, & Ladurner (2006Adopted perspective of other Perspective of self fMRI 18  
Berthoz, Armony, Blair, & Dolan (2002Intentional social violation story Unintentional social violation story fMRI 12 10  
Bhatt & Camerer (2005Second-order belief judgment Belief judgment fMRI 16  
Brunet, Sarfati, Hardy-Bayle, & Decety (2000Intention attribution Physical causality attribution PET 17  
Castelli, Happe, Frith, & Frith (2000ToM animated shapes Randomly moving shapes PET 10  
Ferstl & von Cramon (2002Take perspective of person in sentences Judged nonword sentences fMRI 13  
Finger, Marsh, Kamel, Mitchell, & Blair (2006Moral or social transgression stories Neutral stories fMRI 16  
Fletcher et al. (1995ToM story judgement Physical causation story judgment PET  
Fukui et al. (2006Competed against other in game Played game independently fMRI 16  
Gallagher & Frith (2004Expressive gestures Instrumental gestures fMRI 12  
German, Niehaus, Roarty, Giesbrecht, & Miller (2004Viewing pretense actions Viewing real actions fMRI 16 18  
Goel, Grafman, Sadato, & Hallett (1995Judge if Columbus could classify object Simple classification of object PET 10  
Grèzes, Frith, & Passingham (2004Judged action as deceptive Judged action as honest fMRI 11 11  
Harris, Todorov, & Fiske (2005Internal attributions for behavior Other attributions fMRI 12 12  
Kobayashi, Glover, & Temple (2006False belief tasks Sentence previously presented fMRI 32 16 bilinguals, 16 monolinguals 
Mitchell et al. (2005Form impression based on behavior Remember sequence of information fMRI 18 13  
Ohnishi et al. (2004ToM animated shapes Randomly moving shapes fMRI 10 13 adolescents 
Perner, Aichhorn, Kronbichler, Staffen, & Ladurner (2006False belief stories False photograph stories fMRI 19  
Rilling, Sanfey, Aronson, Nystrom, & Cohen (2004Competed against putative other in game Button presses fMRI 19 10  
Ruby & Decety (2003Adopted lay perspective Perspective of self PET 10 13  
Russell et al. (2000Judge mental state from face Judge gender from face fMRI  
Saxe & Kanwisher (2003ToM story judgment Physical causality story judgment fMRI 25  
Saxe, Schulz, & Jiang (2006False belief stories False photograph stories fMRI 12  
Saxe & Wexler (2005False belief stories False photograph stories fMRI 12  
Schilbach et al. (2006View social interaction with self View social interaction with other fMRI 18  
Spiers & Maguire (2006bSpontaneous ToM events Non-ToM events fMRI 20  
Vogeley et al. (2001ToM story judgment Non-ToM story judgments fMRI  
Vollm et al. (2006ToM cartoon judgement Physical causality cartoon judgment fMRI 13 13  
Walter et al. (2004Communicative intention Physical causality attribution fMRI 13 18  
ibid. Communicative intention Physical causality attribution fMRI 12 15  
Wicker, Perrett, Baron-Cohen, & Decety (2003Intention attribution to direct gaze Averted gaze PET 10  
   total 416 255  
Study
Task
Comparison Task
Modality
n
Foci
Comments
Aichhorn, Perner, Kronbichler, Staffen, & Ladurner (2006Adopted perspective of other Perspective of self fMRI 18  
Berthoz, Armony, Blair, & Dolan (2002Intentional social violation story Unintentional social violation story fMRI 12 10  
Bhatt & Camerer (2005Second-order belief judgment Belief judgment fMRI 16  
Brunet, Sarfati, Hardy-Bayle, & Decety (2000Intention attribution Physical causality attribution PET 17  
Castelli, Happe, Frith, & Frith (2000ToM animated shapes Randomly moving shapes PET 10  
Ferstl & von Cramon (2002Take perspective of person in sentences Judged nonword sentences fMRI 13  
Finger, Marsh, Kamel, Mitchell, & Blair (2006Moral or social transgression stories Neutral stories fMRI 16  
Fletcher et al. (1995ToM story judgement Physical causation story judgment PET  
Fukui et al. (2006Competed against other in game Played game independently fMRI 16  
Gallagher & Frith (2004Expressive gestures Instrumental gestures fMRI 12  
German, Niehaus, Roarty, Giesbrecht, & Miller (2004Viewing pretense actions Viewing real actions fMRI 16 18  
Goel, Grafman, Sadato, & Hallett (1995Judge if Columbus could classify object Simple classification of object PET 10  
Grèzes, Frith, & Passingham (2004Judged action as deceptive Judged action as honest fMRI 11 11  
Harris, Todorov, & Fiske (2005Internal attributions for behavior Other attributions fMRI 12 12  
Kobayashi, Glover, & Temple (2006False belief tasks Sentence previously presented fMRI 32 16 bilinguals, 16 monolinguals 
Mitchell et al. (2005Form impression based on behavior Remember sequence of information fMRI 18 13  
Ohnishi et al. (2004ToM animated shapes Randomly moving shapes fMRI 10 13 adolescents 
Perner, Aichhorn, Kronbichler, Staffen, & Ladurner (2006False belief stories False photograph stories fMRI 19  
Rilling, Sanfey, Aronson, Nystrom, & Cohen (2004Competed against putative other in game Button presses fMRI 19 10  
Ruby & Decety (2003Adopted lay perspective Perspective of self PET 10 13  
Russell et al. (2000Judge mental state from face Judge gender from face fMRI  
Saxe & Kanwisher (2003ToM story judgment Physical causality story judgment fMRI 25  
Saxe, Schulz, & Jiang (2006False belief stories False photograph stories fMRI 12  
Saxe & Wexler (2005False belief stories False photograph stories fMRI 12  
Schilbach et al. (2006View social interaction with self View social interaction with other fMRI 18  
Spiers & Maguire (2006bSpontaneous ToM events Non-ToM events fMRI 20  
Vogeley et al. (2001ToM story judgment Non-ToM story judgments fMRI  
Vollm et al. (2006ToM cartoon judgement Physical causality cartoon judgment fMRI 13 13  
Walter et al. (2004Communicative intention Physical causality attribution fMRI 13 18  
ibid. Communicative intention Physical causality attribution fMRI 12 15  
Wicker, Perrett, Baron-Cohen, & Decety (2003Intention attribution to direct gaze Averted gaze PET 10  
   total 416 255  

ToM = theory of mind.

Studies on default mode included those reporting foci for either task-related deactivations (e.g., Shulman et al., 1997) or activations (e.g., Mason et al., 2007) associated with rest or fixation. Studies were excluded if they examined brain deactivations associated with cognitively demanding tasks relative to another active task (e.g., covert counting vs. lexical retrieval; Hutchinson et al., 1999), if the baseline or rest condition involved responding to an external stimulus (e.g., flashing screen; Gilbert, Simons, Frith, & Burgess, 2006), or if the study constituted a functional connectivity analysis rather than a typical contrast analysis (e.g., Greicius, Krasnow, Reiss, & Menon, 2003). In total, 16 studies of the default network were included in the analysis (Table 4).

Table 4. 

Default-mode Data Sources

Study
Task
Comparison Task
Modality
n
Foci
Comments
Andreasen et al. (1995Rest Semantic memory retrieval PET 13  
Binder et al. (1999Rest Active listening fMRI 30  
Christoff, Ream, & Gabrieli (2004Rest Arrow cued button press fMRI 12 15  
D'Argembeau et al. (2005Rest Reflecting on self, other and society PET 12  
Fransson (2006Rest Working memory fMRI 14 21  
Gould, Brown, Owen, Bullmore, & Howard (2006Rest Paired associate retrieval and encoding fMRI 24 18 12 young, 12 older adults 
Greicius, Srivastava, Reiss, & Menon (2004Rest Button press to flashing screen fMRI 14 young adults 
ibid. Rest Button press to flashing screen fMRI 14 17 young adults 
ibid. Rest Button press to flashing screen fMRI 13 22 older adults 
Kennedy, Redcay, & Courchesne (2006Fixation Counting Stroop task fMRI 14  
Mason et al. (2007Rest Working memory fMRI 19 20  
Mazoyer et al. (2001Rest Multiple Experimental Conditions A PET 63 24 MA (9 studies) 
McGuire et al. (1996SITF Articulation PET  
ibid. SITF Reading PET ROI 
McKiernan, Kaufman, Kucera-Thompson, & Binder (2003Rest Target detection fMRI 30 20  
Persson, Lustig, Nelson, & Reuter-Lorenz (2007Fixation Verb generation fMRI 60 11 32 young, 28 older adults 
Raichle et al. (2001Rest ROI regional/global brain oxygen flow PET 19 ROI 
ibid. Rest ROI regional/global brain oxygen flow PET 19 ROI 
Shulman et al. (1997Fixation Visual information processing PET 132 14 MA (9 studies) 
Wicker, Ruby, Royet, & Fonlupt (2003Rest Multiple Experimental Conditions B PET 42 MA (5 studies) 
   total 555 247  
Study
Task
Comparison Task
Modality
n
Foci
Comments
Andreasen et al. (1995Rest Semantic memory retrieval PET 13  
Binder et al. (1999Rest Active listening fMRI 30  
Christoff, Ream, & Gabrieli (2004Rest Arrow cued button press fMRI 12 15  
D'Argembeau et al. (2005Rest Reflecting on self, other and society PET 12  
Fransson (2006Rest Working memory fMRI 14 21  
Gould, Brown, Owen, Bullmore, & Howard (2006Rest Paired associate retrieval and encoding fMRI 24 18 12 young, 12 older adults 
Greicius, Srivastava, Reiss, & Menon (2004Rest Button press to flashing screen fMRI 14 young adults 
ibid. Rest Button press to flashing screen fMRI 14 17 young adults 
ibid. Rest Button press to flashing screen fMRI 13 22 older adults 
Kennedy, Redcay, & Courchesne (2006Fixation Counting Stroop task fMRI 14  
Mason et al. (2007Rest Working memory fMRI 19 20  
Mazoyer et al. (2001Rest Multiple Experimental Conditions A PET 63 24 MA (9 studies) 
McGuire et al. (1996SITF Articulation PET  
ibid. SITF Reading PET ROI 
McKiernan, Kaufman, Kucera-Thompson, & Binder (2003Rest Target detection fMRI 30 20  
Persson, Lustig, Nelson, & Reuter-Lorenz (2007Fixation Verb generation fMRI 60 11 32 young, 28 older adults 
Raichle et al. (2001Rest ROI regional/global brain oxygen flow PET 19 ROI 
ibid. Rest ROI regional/global brain oxygen flow PET 19 ROI 
Shulman et al. (1997Fixation Visual information processing PET 132 14 MA (9 studies) 
Wicker, Ruby, Royet, & Fonlupt (2003Rest Multiple Experimental Conditions B PET 42 MA (5 studies) 
   total 555 247  

SIT = stimulus-independent thought. Multiple Experimental Conditions A include visual, calculation, imagery, language, and perception processing. Multiple Experimental Conditions B comprises spatial, intentional, pleasantness and belief judgments, and perception of gaze. MA = meta-analysis.

A surge in neuroimaging studies examining prospection has begun to unravel the neural underpinnings of future-oriented thinking. In light of these papers, we have elected to loosen the inclusion criteria and incorporate six papers into a separate ALE analysis (Table 5). Unlike the aforementioned domains, we included studies with baseline conditions equivalent to our other task domains (e.g., theory-of-mind control task, Szpunar et al., 2007; fixation, Sharot et al., 2007) and contacted the authors for information on unpublished contrasts of interest (Future > Control; Addis et al., 2007; Sharot et al., 2007; Szpunar et al., 2007). Due to the small number of studies, collection of papers outside the designated time window, and reliance upon unpublished results, we do not include prospection in the conjunction analysis with the other four domains. Patterns of brain activity identified by the prospection meta-analysis are, however, discussed in light of those identified by the conjunction analysis.

Table 5. 

Prospection Data Sources

Study
Task
Comparison Task
Modality
n
Foci
Comments
Addis et al. (2007Cued future event elaboration Imagery and semantic elaboration fMRI 14 14 Coordinates provided by author 
Botzung et al. (2008Cued “pre-experiencing” of previously determined event Judgment of semantic relatedness fMRI 10 12  
D'Argembeau et al. (2008Cued “pre-experiencing” of previously determined event Imagining routine activity fMRI 12  
Okuda et al. (2003Talking about personal distant future Talking about the meaning of words PET 12 14  
Sharot et al. (2007Cued future event from short description Fixation fMRI 15 24 Coordinates provided by author 
Szpunar et al. (2007Cued future event of common life experience Cued imagining of Bill Clinton fMRI 21 16 Coordinates provided by author 
   total 84 86  
Study
Task
Comparison Task
Modality
n
Foci
Comments
Addis et al. (2007Cued future event elaboration Imagery and semantic elaboration fMRI 14 14 Coordinates provided by author 
Botzung et al. (2008Cued “pre-experiencing” of previously determined event Judgment of semantic relatedness fMRI 10 12  
D'Argembeau et al. (2008Cued “pre-experiencing” of previously determined event Imagining routine activity fMRI 12  
Okuda et al. (2003Talking about personal distant future Talking about the meaning of words PET 12 14  
Sharot et al. (2007Cued future event from short description Fixation fMRI 15 24 Coordinates provided by author 
Szpunar et al. (2007Cued future event of common life experience Cued imagining of Bill Clinton fMRI 21 16 Coordinates provided by author 
   total 84 86  

Creation of ALE Maps for Each Domain

The ALE method provides a voxel-based meta-analytic technique for functional neuroimaging data (Turkeltaub et al., 2002). The software (BrainMap Search&View 3.2.1) computes statistically significant concordance in the pattern of brain activity among several independent experiments. ALE maps are derived based on foci of interest, which comprise statistically significant peak activation locations from multiple studies.

The original studies contributing these foci for each domain are presented in Tables 1,2345. Coordinates reported in MNI were converted to Talairach using the Brett, Christoff, Cusack, and Lancaster (2001) transformation. In the approach taken by ALE, localization probability distributions for the foci are modeled at the center of 3-D Gaussian functions, where the Gaussian distributions are summed across the experiments to generate a map of interstudy consistencies that estimate the likelihood of activation for each voxel, the ALE statistic, as determined by the entire set of studies. Voxel sizes were determined at full-width half-maximum of 10 mm. The ALE values are computed using the same full-width half-maximum value and for each domain, randomly generated foci (identical in number to those being tested) were employed as the null set across 5000 permutations. The false discovery rate method was employed to correct for multiple comparisons at a significance threshold of p < .05 (Laird, Fox, et al., 2005). For each of the five domains, ALE maps and cluster reports were generated. Anatomical labels were then applied to the resultant clusters using the Talairach Daemon and visual inspection (for greater detail on the ALE method, see Laird, Fox, et al., 2005; Turkeltaub et al., 2002; for a discussion of meta-analytic approaches to neuroimaging data, see Wager, Lindquist, & Kaplan, 2007).

Conjunction Analysis

The ALE maps were imported into AFNI (Cox, 1996), and a conjunction analysis was undertaken to examine the correspondence of consistently activated regions across autobiographical memory, navigation, theory of mind, and default mode. Conjunction was determined by creating a mask, using 3dcalc, and overlaying the resultant ALE maps for each domain onto an anatomical template in Talairach and Tournoux (1988) space to visualize cluster overlay (N.B. this does not constitute a statistical test). The location of overlapping clusters is reported in Talairach coordinates.

RESULTS

Domain-specific ALE results are presented in Figure 1 and Tables 6,78910. Discussion of the individual meta-analyses performed for each domain is unfortunately outside the scope of this article (see Buckner, Andrews-Hanna, & Schacter, 2008; Schacter, Addis, & Buckner, 2008; Cabeza & St Jacques, 2007; Spiers & Maguire, 2007; Gallagher & Frith, 2003, for reviews on these topics). The results of the conjunction reveal correspondence of ALE clusters across four or three cognitive domains in a number of locations and are described below (also Table 11 and Figure 2) along with their consistency with prospection findings (Table 11). Correspondence across domains is said to occur if, (a) ALE clusters directly overlapped within 3-D space or, (b) if clusters converge within the same brain structure. Clusters are said to converge if they fall within 10 mm of each other, and are within the same Brodmann's area (BA) or unlabeled region (e.g., hippocampus). Prospection is reported to be consistent with the conjunction analysis if the ALE output demonstrates a similar cluster in the same brain region. This method of determining convergence across domains with prospection is similar to the determination of coactivation using a tabular method.

Figure 1. 

ALE meta-analysis maps for individual domains demonstrating significant concordance across studies (p < .05, corrected for multiple comparisons). ABM = autobiographical memory; NAV = navigation; TOM = theory of mind; DFM = default mode; PRO = prospection. Images follow radiological convention: Left side of the brain is right.

Figure 1. 

ALE meta-analysis maps for individual domains demonstrating significant concordance across studies (p < .05, corrected for multiple comparisons). ABM = autobiographical memory; NAV = navigation; TOM = theory of mind; DFM = default mode; PRO = prospection. Images follow radiological convention: Left side of the brain is right.

Table 6. 

Autobiographical Memory Results

Extent of Cluster
Coordinates
ALE (10−3)
Vol (mm3)
Laterality
Anatomic Region(s)
Brodmann's Area(s)
x
y
z
L and R PCu, PCC 7, 31, 23 −2 −53 18 26.4 9256 
HC, PHC, AMG 35, 36, 28a −25 −26 −14 27.0 7776 
TPJ 39, 22 −47 −61 26 19.6 3632 
Medial prefrontal cortex, rACC (bilateral) 10, 24, 32 −3 47 −1 20.8 2456 
STS, MTG, inferior temporal sulcus 20, 21 −56 −8 −14 22.8 2192 
Ventrolateral prefrontal cortex, temporal pole 47, 38 −47 25 −5 14.0 1664 
HC, PHC 36, 35, 28 23 −31 −12 20.8 1640 
L and Rb Middle frontal gyrus −3 12 57 24.0 1448 
TPJ 39 49 −59 27 14.3 1136 
Lb Posterior lateral prefrontal cortex −45 45 14.6 704 
Lb Frontal pole (lateral) 10 −40 47 14 16.8 672 
HC, PHC 28 23 −13 −15 15.2 640 
Temporal pole, STS, MTG 38a, 21 49 −5 −13 11.8 608 
Temporal pole 38 −37 14 −32 14.2 584 
Occ 19 −37 −81 30 12.8 568 
Lb Dorsolateral prefrontal cortex 46a, 45 −46 24 21 13.8 456 
Ventrolateral prefrontal cortex 47 50 27 −5 8.9 240 
Frontal pole (medial) 10 −11 55 17 9.8 184 
Thalamus n/a −9 9.3 184 
rACC 32 −5 33 22 10.7 168 
PCC 31 −6 −37 33 10.9 152 
Superior frontal sulcus −28 51 9.6 144 
AMG n/a 28 −19 10.1 104 
Extent of Cluster
Coordinates
ALE (10−3)
Vol (mm3)
Laterality
Anatomic Region(s)
Brodmann's Area(s)
x
y
z
L and R PCu, PCC 7, 31, 23 −2 −53 18 26.4 9256 
HC, PHC, AMG 35, 36, 28a −25 −26 −14 27.0 7776 
TPJ 39, 22 −47 −61 26 19.6 3632 
Medial prefrontal cortex, rACC (bilateral) 10, 24, 32 −3 47 −1 20.8 2456 
STS, MTG, inferior temporal sulcus 20, 21 −56 −8 −14 22.8 2192 
Ventrolateral prefrontal cortex, temporal pole 47, 38 −47 25 −5 14.0 1664 
HC, PHC 36, 35, 28 23 −31 −12 20.8 1640 
L and Rb Middle frontal gyrus −3 12 57 24.0 1448 
TPJ 39 49 −59 27 14.3 1136 
Lb Posterior lateral prefrontal cortex −45 45 14.6 704 
Lb Frontal pole (lateral) 10 −40 47 14 16.8 672 
HC, PHC 28 23 −13 −15 15.2 640 
Temporal pole, STS, MTG 38a, 21 49 −5 −13 11.8 608 
Temporal pole 38 −37 14 −32 14.2 584 
Occ 19 −37 −81 30 12.8 568 
Lb Dorsolateral prefrontal cortex 46a, 45 −46 24 21 13.8 456 
Ventrolateral prefrontal cortex 47 50 27 −5 8.9 240 
Frontal pole (medial) 10 −11 55 17 9.8 184 
Thalamus n/a −9 9.3 184 
rACC 32 −5 33 22 10.7 168 
PCC 31 −6 −37 33 10.9 152 
Superior frontal sulcus −28 51 9.6 144 
AMG n/a 28 −19 10.1 104 

ALE meta-analysis results demonstrating significant concordance across studies (p < .05, corrected for multiple comparisons). Higher ALE value indicates greater concordance. Coordinates are reported according to the Talairach and Tournoux (1988) atlas. ALE = activation likelihood estimation; Vol = cluster volume; L = left; R = right.

Some unique clusters (b) were within 10 mm of another domain's cluster, but never within the same BA. Some brain regions with no ipsilateral convergence (a) fell within 10 mm of another domain's clusters but never within the same BA.

AMG = amygdala; HC = hippocampus; MTG = middle temporal gyrus, Occ = occipital lobe; PHC = parahippocampal cortex; PCC = posterior cingulate cortex; PCu = precuneus; rACC = rostral anterior cingulate cortex; RSC = retrosplenial cortex; STS = superior temporal sulcus; TPJ = temporo-parietal junction.

a

Brain region (BA) showed no ipsilateral correspondence with any other domain.

b

Clusters greater than 10 mm away from any other domain's clusters.

Table 7. 

Navigation Results

Extent of Cluster
Coordinates
ALE (10−3)
Vol (mm3)
Laterality
Anatomic Region(s)
Brodmann's Area(s)
x
y
z
HC, PHC 28, 27a, 35, 36 25 −30 −8 24.3 5928 
HC, PHC 27, 35, 36 −25 −34 −8 17.3 4440 
RSC, PCC 30, 31 −17 −58 21 20.2 1800 
TPJ, Occ 39, 19 −34 −78 34 13.9 1584 
RSC, PCC 30, 31 16 −54 17 13.4 1400 
TPJ, Occ 39, 19 42 −74 32 13.3 1168 
Ventrolateral prefrontal cortex 47, 45 −47 22 12.8 1104 
Rb Superior frontal sulcus 27 −3 53 8.8 616 
Lb Superior frontal sulcus −27 −11 55 9.5 448 
Rb Superior parietal lobule 13 −68 54 8.8 304 
Lb Cerebellar vermis n/aa −6 −69 −10 9.0 296 
PCu −12 −62 39 8.4 264 
Thalamus n/a −6 8.8 264 
Lb Ventral temporal lobe 20 −37 −8 −35 9.4 256 
Rb Posterior medial prefrontal cortex, dACC 6, 32 13 11 47 7.9 224 
Superior parietal lobule −20 −67 52 8.4 216 
Thalamus n/a −13 −24 9.0 208 
Extent of Cluster
Coordinates
ALE (10−3)
Vol (mm3)
Laterality
Anatomic Region(s)
Brodmann's Area(s)
x
y
z
HC, PHC 28, 27a, 35, 36 25 −30 −8 24.3 5928 
HC, PHC 27, 35, 36 −25 −34 −8 17.3 4440 
RSC, PCC 30, 31 −17 −58 21 20.2 1800 
TPJ, Occ 39, 19 −34 −78 34 13.9 1584 
RSC, PCC 30, 31 16 −54 17 13.4 1400 
TPJ, Occ 39, 19 42 −74 32 13.3 1168 
Ventrolateral prefrontal cortex 47, 45 −47 22 12.8 1104 
Rb Superior frontal sulcus 27 −3 53 8.8 616 
Lb Superior frontal sulcus −27 −11 55 9.5 448 
Rb Superior parietal lobule 13 −68 54 8.8 304 
Lb Cerebellar vermis n/aa −6 −69 −10 9.0 296 
PCu −12 −62 39 8.4 264 
Thalamus n/a −6 8.8 264 
Lb Ventral temporal lobe 20 −37 −8 −35 9.4 256 
Rb Posterior medial prefrontal cortex, dACC 6, 32 13 11 47 7.9 224 
Superior parietal lobule −20 −67 52 8.4 216 
Thalamus n/a −13 −24 9.0 208 

ALE meta-analysis results demonstrating significant concordance across studies (p < .05 corrected for multiple comparisons). Higher ALE value indicates greater concordance. Coordinates are reported according to the Talairach and Tournoux (1988) atlas. ALE = activation likelihood estimation; Vol = cluster volume; L = left; R = right.

dACC = dorsal anterior cingulate cortex; HC = hippocampus; Occ = occipital lobe; PHC = parahippocampal cortex; PCC = posterior cingulate cortex; PCu = precuneus; RSC = retrosplenial cortex; TPJ = temporo-parietal junction.

a

Brain region (BA) showed no ipsilateral correspondence with any other domain.

b

Clusters greater than 10 mm away from any other domain's clusters.

Table 8. 

Theory-of-mind Results

Extent of Cluster
Coordinates
ALE (10−3)
Vol (mm3)
Laterality
Anatomic Region(s)
Brodmann's Area(s)
x
y
z
L and R Anterior medial prefrontal cortex, rACC 10, 9, 32 −3 52 20 20.9 7704 
TPJ 39, 40a, 22 54 −49 19 22.9 6944 
TPJ 39, 40a, 22 −54 −54 18 16.4 4168 
Temporal pole, STS, MTG 38, 21, 20 54 −13 −13 17.1 3024 
STS, MTG 21 −55 −17 −10 18.2 1752 
L and R PCu, PCC 7, 31 −4 −52 31 12.7 1000 
Temporal pole, ventrolateral prefrontal cortex 38, 47 −46 29 −11 20.3 888 
Ventrolateral prefrontal cortex 45, 47 50 30 −3 12.1 824 
Ventrolateral prefrontal cortex 45, 44, 47 −50 15 14.0 616 
AMG n/a −25 −6 −20 15.4 592 
Rb Occ 18a 34 −92 14.1 568 
Dorsolateral prefrontal cortex 9, 8 23 46 39 13.9 472 
AMG n/a 24 −18 13.0 352 
L and R Ventromedial prefrontal cortex 11 50 −16 11.7 320 
PCC, RSC 23, 29, 30 −57 15 12.5 312 
Fusiform gyrus 37 −37 −44 −14 11.4 248 
TPJ 39 −43 −68 39 12.1 248 
HC, PHC 36 −30 −31 −9 10.2 224 
Rb Occ 19 26 −97 14 9.2 176 
Rb Insula 13 46 −4 10.8 160 
L and Rb dACC 24 −1 37 10.3 112 
PCu −9 −51 42 9.7 112 
Extent of Cluster
Coordinates
ALE (10−3)
Vol (mm3)
Laterality
Anatomic Region(s)
Brodmann's Area(s)
x
y
z
L and R Anterior medial prefrontal cortex, rACC 10, 9, 32 −3 52 20 20.9 7704 
TPJ 39, 40a, 22 54 −49 19 22.9 6944 
TPJ 39, 40a, 22 −54 −54 18 16.4 4168 
Temporal pole, STS, MTG 38, 21, 20 54 −13 −13 17.1 3024 
STS, MTG 21 −55 −17 −10 18.2 1752 
L and R PCu, PCC 7, 31 −4 −52 31 12.7 1000 
Temporal pole, ventrolateral prefrontal cortex 38, 47 −46 29 −11 20.3 888 
Ventrolateral prefrontal cortex 45, 47 50 30 −3 12.1 824 
Ventrolateral prefrontal cortex 45, 44, 47 −50 15 14.0 616 
AMG n/a −25 −6 −20 15.4 592 
Rb Occ 18a 34 −92 14.1 568 
Dorsolateral prefrontal cortex 9, 8 23 46 39 13.9 472 
AMG n/a 24 −18 13.0 352 
L and R Ventromedial prefrontal cortex 11 50 −16 11.7 320 
PCC, RSC 23, 29, 30 −57 15 12.5 312 
Fusiform gyrus 37 −37 −44 −14 11.4 248 
TPJ 39 −43 −68 39 12.1 248 
HC, PHC 36 −30 −31 −9 10.2 224 
Rb Occ 19 26 −97 14 9.2 176 
Rb Insula 13 46 −4 10.8 160 
L and Rb dACC 24 −1 37 10.3 112 
PCu −9 −51 42 9.7 112 

ALE meta-analysis results demonstrating significant concordance across studies (p < .05 corrected for multiple comparisons). Higher ALE value indicates greater concordance. Coordinates are reported according to the Talairach and Tournoux (1988) atlas. ALE = activation likelihood estimation; Vol = cluster volume; L = left; R = right.

AMG = amygdala; dACC = dorsal anterior cingulate cortex; HC = hippocampus; MTG = middle temporal gyrus; Occ = occipital lobe; PHC = parahippocampal cortex; PCC = posterior cingulate cortex; PCu = precuneus; rACC = rostral anterior cingulate cortex; RSC = retrosplenial cortex; STS = superior temporal sulcus; TPJ = temporo-parietal junction.

a

Brain region (BA) showed no ipsilateral correspondence with any other domain.

b

Clusters greater than 10 mm away from any other domain's clusters.

Table 9. 

Default-mode Results

Extent of Cluster
Coordinates
ALE (10−3)
Vol (mm3)
Laterality
Anatomic Region(s)
Brodmann Area(s)
x
y
z
L and R Medial prefrontal cortex, rACC 10, 11, 32 −1 47 −1 27.4 5976 
TPJ, Occ 39, 19 −43 −69 32 28.4 4888 
PCu, PCC, RSC 7, 31, 23, 30, 29 −7 −48 31 19.3 3152 
TPJ, STS 39, 22 49 −63 20 22.2 2464 
Insula, superior temporal gyrus, STS 13a, 22 −43 −19 −2 18.7 1464 
Dorsal prefrontal cortex 9, 8a −24 27 45 16.5 1408 
Dorsal prefrontal cortex 9, 8 20 38 40 18.1 1240 
Dorsal prefrontal cortex 8a −12 42 39 12.0 784 
PHC 26, 37, 35 −26 −36 −13 12.4 776 
Inferior temporal sulcus 20 −49 −18 −18 17.4 760 
PCu −6 −61 48 15.6 720 
PCu, PCC 7, 31 −59 24 11.5 696 
Rb Insula 13 40 −11 14.3 608 
Ventral prefrontal cortex, temporal pole 47, 38 −29 24 −21 11.9 464 
Frontal pole, dorsolateral prefrontal cortex 10, 9 −15 55 26 12.6 288 
Thalamus n/a −3 −12 12.6 272 
Inferior temporal sulcus, MTG 20, 21 −60 −15 −19 9.7 240 
Inferior temporal sulcus, MTG 20, 21 62 −16 −17 11.0 240 
Rb Cerebellum, pyramis n/aa 41 −76 −33 10.5 232 
Lb Cerebellum, inferior semilunar lobule n/aa −6 −58 −40 11.8 184 
Superior lateral prefrontal cortex 8a −35 20 50 10.1 128 
Extent of Cluster
Coordinates
ALE (10−3)
Vol (mm3)
Laterality
Anatomic Region(s)
Brodmann Area(s)
x
y
z
L and R Medial prefrontal cortex, rACC 10, 11, 32 −1 47 −1 27.4 5976 
TPJ, Occ 39, 19 −43 −69 32 28.4 4888 
PCu, PCC, RSC 7, 31, 23, 30, 29 −7 −48 31 19.3 3152 
TPJ, STS 39, 22 49 −63 20 22.2 2464 
Insula, superior temporal gyrus, STS 13a, 22 −43 −19 −2 18.7 1464 
Dorsal prefrontal cortex 9, 8a −24 27 45 16.5 1408 
Dorsal prefrontal cortex 9, 8 20 38 40 18.1 1240 
Dorsal prefrontal cortex 8a −12 42 39 12.0 784 
PHC 26, 37, 35 −26 −36 −13 12.4 776 
Inferior temporal sulcus 20 −49 −18 −18 17.4 760 
PCu −6 −61 48 15.6 720 
PCu, PCC 7, 31 −59 24 11.5 696 
Rb Insula 13 40 −11 14.3 608 
Ventral prefrontal cortex, temporal pole 47, 38 −29 24 −21 11.9 464 
Frontal pole, dorsolateral prefrontal cortex 10, 9 −15 55 26 12.6 288 
Thalamus n/a −3 −12 12.6 272 
Inferior temporal sulcus, MTG 20, 21 −60 −15 −19 9.7 240 
Inferior temporal sulcus, MTG 20, 21 62 −16 −17 11.0 240 
Rb Cerebellum, pyramis n/aa 41 −76 −33 10.5 232 
Lb Cerebellum, inferior semilunar lobule n/aa −6 −58 −40 11.8 184 
Superior lateral prefrontal cortex 8a −35 20 50 10.1 128 

ALE meta-analysis results demonstrating significant concordance across studies (p < .05 corrected for multiple comparisons). Higher ALE value indicates greater concordance. Coordinates are reported according to the Talairach and Tournoux (1988) atlas. ALE = activation likelihood estimation; Vol = cluster volume; L = left; R = right.

MTG = middle temporal gyrus; Occ = occipital lobe; PHC = parahippocampal cortex; PCC = posterior cingulate cortex; PCu = precuneus; rACC = rostral anterior cingulate cortex; RSC = retrosplenial cortex; STS = superior temporal sulcus; TPJ = temporo-parietal junction.

a

Brain region (BA) showed no ipsilateral correspondence with any other domain.

b

Clusters greater than 10 mm away from any other domain's clusters.

Table 10. 

Prospection Results

Extent of Cluster
Coordinates
ALE (10−3)
Vol (mm3)
Laterality
Anatomic Region(s)
Brodmann's Area(s)
x
y
z
L and R PCC, PCu 31, 23 −5 −51 29 16.8 2944 
L and R Anterior medial prefrontal cortex 10, 11 −1 59 −4 9.9 1536 
TPJ 39 −49 −64 29 13.2 1136 
HC, PHC, tail of caudate 37 −28 −41 −5 9.0 1024 
Dorsolateral prefrontal cortex −17 45 30 9.7 968 
L and R rACC, ventromedial prefrontal cortex (left only) 32, 11 −1 41 −12 7.7 608 
STS, MTG 21, 20 −52 −7 −14 10.8 600 
AMG, PHC 34, 28 21 −9 −13 11.6 600 
RSC 30, 29 −54 9.0 496 
HC, PHC 36 32 −28 −11 8.3 392 
RSC 30, 29 −5 −53 12 7.0 112 
rACC 32 −7 46 7.0 104 
Extent of Cluster
Coordinates
ALE (10−3)
Vol (mm3)
Laterality
Anatomic Region(s)
Brodmann's Area(s)
x
y
z
L and R PCC, PCu 31, 23 −5 −51 29 16.8 2944 
L and R Anterior medial prefrontal cortex 10, 11 −1 59 −4 9.9 1536 
TPJ 39 −49 −64 29 13.2 1136 
HC, PHC, tail of caudate 37 −28 −41 −5 9.0 1024 
Dorsolateral prefrontal cortex −17 45 30 9.7 968 
L and R rACC, ventromedial prefrontal cortex (left only) 32, 11 −1 41 −12 7.7 608 
STS, MTG 21, 20 −52 −7 −14 10.8 600 
AMG, PHC 34, 28 21 −9 −13 11.6 600 
RSC 30, 29 −54 9.0 496 
HC, PHC 36 32 −28 −11 8.3 392 
RSC 30, 29 −5 −53 12 7.0 112 
rACC 32 −7 46 7.0 104 

ALE meta-analysis results demonstrating significant concordance across studies (p < .05 corrected for multiple comparisons). Higher ALE value indicates greater concordance. Coordinates are reported according to the Talairach and Tournoux (1988) atlas. ALE = activation likelihood estimation; Vol = cluster volume; L = left; R = right.

AMG = amygdala; HC = hippocampus; MTG = middle temporal gyrus; PHC = parahippocampal cortex; PCC = posterior cingulate cortex; PCu = precuneus; rACC = rostral anterior cingulate cortex; RSC = retrosplenial cortex; STS = superior temporal sulcus; TPJ = temporo-parietal junction.

Table 11. 

Correspondence across Domains

Domain
Prefrontal
Medial Temporal
Medial Parietal
Lateral
Pole
rACC
Lateral
HC
PHC
AMG
PCu/PCC
RSC
TPJ
STS/MTG
Occ
Autobiographical memory LR LR LR LR LR LR LR LR LR 
Navigation – – LR LR – LR LR LR – LR 
Theory of mind LR LR LR LR LR LR LR 
Default mode LR LR – – LR LR LR 
Prospection LR LR LR LR LR LR – 
Domain
Prefrontal
Medial Temporal
Medial Parietal
Lateral
Pole
rACC
Lateral
HC
PHC
AMG
PCu/PCC
RSC
TPJ
STS/MTG
Occ
Autobiographical memory LR LR LR LR LR LR LR LR LR 
Navigation – – LR LR – LR LR LR – LR 
Theory of mind LR LR LR LR LR LR LR 
Default mode LR LR – – LR LR LR 
Prospection LR LR LR LR LR LR – 

L = left hemisphere cluster; R = right hemisphere cluster; rACC = rostral anterior cingulate gyrus; HC = hippocampus; PHC = parahippocampal cortex; AMG = amygdala; PCu/PCC = precuneus and posterior cingulate cortex; RSC = retrosplenial cortex; STS/MTG = superior temporal sulcus and middle temporal gyrus; Occ = occipital lobe.

Figure 2. 

Conjunction between ALE maps of four domains. Red and yellow demarcate conjunction between two and three domains, respectively. The encapsulated black voxel (−28, −35, −10; 10 mm3) indicates overlap across all four domains. Coronal coordinates for the panel slices are: (A) y = 51; (B) y = −64. Images follow radiological convention: Left is right. Sagittal coordinates of the left hemisphere panel slices are: (C) x = −4; (D) x = −27; (E) x = −48.

Figure 2. 

Conjunction between ALE maps of four domains. Red and yellow demarcate conjunction between two and three domains, respectively. The encapsulated black voxel (−28, −35, −10; 10 mm3) indicates overlap across all four domains. Coronal coordinates for the panel slices are: (A) y = 51; (B) y = −64. Images follow radiological convention: Left is right. Sagittal coordinates of the left hemisphere panel slices are: (C) x = −4; (D) x = −27; (E) x = −48.

The conjunction analysis was also utilized to determine differences in cluster location among the domains. Domain-specific clusters that are unshared and unique to a particular domain are noted in Tables 6,789. Unique clusters are defined as occurring at a distance greater than 10 mm from any other cluster. Additionally, a cluster that converges with another in one BA may extend to an additional region in isolation. These are noted in Tables 6,789 as well.

All four domains demonstrated correspondence within the medial-temporal lobe, medial parietal regions, the temporo-parietal junction, the occipital lobe, and the lateral prefrontal cortex. When considering all domains except for navigation, two additional areas showed correspondence: the medial prefrontal and lateral temporal regions. Prospection was associated with all of these areas except for the occipital lobe. The extent of convergence and overlap within each region is reviewed below.

Medial-Temporal Lobe

All four domains converged within the left medial-temporal lobe. Direct overlap was observed within the left parahippocampal gyrus (BA 36) [−28, −35, −10] and all domains except default mode converged within the left hippocampus. Differences in the pattern of medial-temporal clusters were also observed. Autobiographical memory demonstrated far more expansive left medial-temporal clusters compared with the other domains (Table 5). Navigation engaged the medial-temporal lobes bilaterally and extended more posteriorly compared with autobiographical memory (Table 6). Prospection also engaged the parahippocampus and the hippocampus bilaterally.

Medial Parietal Regions

Convergence in the precuneus, the posterior cingulate, and the retrosplenial cortex was extensive for all four domains. Within the precuneus and the posterior cingulate, direct overlap was observed in the right hemisphere [6, −59, 17] and left hemisphere [−5, −50, 30] for all domains except navigation. On the left, an additional point of convergence was observed with all domains except theory of mind [−10, −57, 24]. Retrosplenial cortex clusters were observed bilaterally for autobiographical memory and navigation, on the right for theory of mind and on the left for default mode. All three medial parietal areas were reliably involved in prospection, bilaterally.

Temporo-parietal Junction and Occipital Lobe

All domains engaged the temporo-parietal junction. Within the right hemisphere, all domains converged in the temporo-parietal junction. In the left hemisphere, direct overlap was observed for all domains except for navigation [−42, −68, 37], with navigation converging in close proximity. For theory of mind, temporo-parietal clusters extended anteriorly into BA 40, whereas the other domain clusters extended posteriorly from the temporo-parietal junction to the occipital cortex (BA 19), where they overlapped in the left hemisphere [−38, −80, 31]. Prospection also involved the left temporo-parietal junction but not the occipital lobe.

Lateral Prefrontal Cortex

All four domains reliably involved the left lateral prefrontal cortex. Convergence occurred in the left ventrolateral prefrontal cortex (inferior frontal gyrus; BA 47) between all domains save default mode. Prospection also engaged the left ventrolateral prefrontal cortex.

Medial Prefrontal Cortex

Autobiographical memory, theory of mind, and default mode, but not navigation, demonstrated additional correspondence in the medial prefrontal cortex. Convergence extended throughout the medial prefrontal cortex and the rostral anterior cingulate (BA 32) with direct overlap observed within the frontal pole (BA 10) [0, 51, 2]. Prospection clusters were also observed throughout the frontal pole and frontal midline structures.

Lateral Temporal Lobe

Convergence was observed for autobiographical memory, theory of mind, and default mode throughout the left and right lateral temporal lobe (BAs 21, 22). Prospection also engaged these regions within the left hemisphere.

DISCUSSION

The strength of evidence for the presence of a core network that underlies multiple cognitive domains was assessed through quantitative ALE meta-analyses. By examining conjunction across autobiographical memory, navigation, theory of mind, and default mode, correspondence was found in the predicted regions (Buckner & Carroll, 2007) and areas not originally proposed. A high degree of agreement was also observed between the output of this conjunction and prospection. The results provide evidence in favor of a core set of brain regions within the default network that underlie remembering, prospection, navigation, and theory of mind. These results also lend support to both the self-projection and scene construction account of a core network by providing extensive, quantitative evidence of a common set of functional neural correlates. The pattern of activation across domains demonstrates that far more is shared than unique. Shared clusters had higher ALE values and far outweighed the number of unique clusters, which tended toward lower ALE values. Less than a quarter of clusters were domain-specific. Autobiographical memory, prospection, navigation, and theory of mind engage the default network in the medial-temporal lobes, medial parietal regions, and the temporo-parietal junction, as predicted by Buckner and Carroll (2007). However, these domains also engage the lateral prefrontal cortex and the occipital cortex, regions not initially predicted to be part of the core network. This finding illustrates the advantages of the ALE approach over narrative reviews. The lateral prefrontal cortex potentially serves to maintain and manipulate information held on-line (D'Esposito, Postle, Ballard, & Lease, 1999), possibly sustaining a mental simulation or scene. Occipital cortex involvement likely supports mental imagery processes (Farah, 1989), useful for visual simulation or imagining scenes.

Autobiographical memory, prospection, and theory of mind demonstrate further functional correspondence, activating the remaining areas of the default network: medial prefrontal cortex and lateral temporal regions (e.g., Buckner et al., 2008; Shulman et al., 1997). Although not predicted by Buckner and Carroll (2007), lateral temporal regions have been previously noted to be involved in autobiographical memory (Svoboda et al., 2006), theory of mind (Gallagher & Frith, 2003), default mode (i.e., task-related deactivations; Shulman et al., 1997), and has been implicated in prospection as well (Schacter, Addis, & Buckner, 2007).

Why is less correspondence observed for navigation? Although navigation primarily involves the retrieval of a detailed visuospatial context, this context does not necessarily involve the self or semantic information. Self-related processes engage the medial prefrontal cortex (D'Argembeau et al., 2007; Mitchell, Banaji, & Macrae, 2005; Ochsner et al., 2005; Northoff & Bermpohl, 2004; Johnson et al., 2002; Craik et al., 1999) and appear likely to be involved in autobiographical memory, prospection, theory of mind, and default-mode processing. Likewise, navigation appears less likely to involve the recollection of semantic information than the other domains, a process tied to the lateral temporal cortices (Martin & Chao, 2001). Medial prefrontal and lateral temporal involvement may add to the richness of a scene, bringing a range of personal, interpersonal, temporal, and semantic detail on-line.

This core network may be involved in more processes than presently reviewed. One potential additional domain is engagement with narrative fiction. A review of story-processing studies found that the associated brain areas are similar to those involved in autobiographical memory and theory of mind (Mar, 2004). This correspondence was interpreted as evidence that theory-of-mind reasoning and autobiographical recollection are engaged during story processing. A number of theorists and researchers have argued for a close link between social cognition and narrative processing (e.g., Mar & Oatley, 2008; Keen, 2007; Mar, Oatley, Hirsh, dela Paz, & Peterson, 2006; Zunshine, 2006; Palmer, 2004; Peskin & Astington, 2004; Oatley, 1999; Bruner, 1986). Xu, Kemeny, Park, Frattali, and Braun (2005) observed this network and hypothesized that it represents the functional integration of the dorsomedial motivational system with the ventrolateral language/categorization system. A core network involved in simulating different times, different spaces, and other minds (Buckner & Carroll, 2007) or constructing complex coherent scenes (Hassabis & Maguire, 2007) could thus also play a role in narrative processing as well.

Beyond exploring the role of a core network that contributes to a broad number of domains, a narrower investigation of the parallel between theory of mind and autobiographical memory could prove informative. These two domains displayed the greatest degree of overlap in the conjunction analysis. Autobiographical memory and theory of mind demonstrated similar patterns of activity from the ventrolateral and medial prefrontal cortex, to the precuneus, posterior cingulate, and retrosplenial cortex; into the medial-temporal region and amygdalae; and from the temporo-parietal junction, down the superior temporal sulcus and middle temporal gyrus to the temporal poles. Both autobiographical memory and theory of mind require meta-representational ability (Perner, 2000), where there must be an awareness of the relation between knowledge sources and present knowledge states; one must possess a theory of mind for oneself in order to acknowledge the past self in relation to the present rememberer. Moreover, there are evolutionary reasons to believe that autobiographical memory and theory of mind should be functionally bound.

It has been argued that hominid brain evolution was driven by social selection pressures (Humphrey, 1976). These pressures gave rise to complex social processes such as deception, perspective taking, and alliance building (Dunbar, 1993; Byrne & Whiten, 1988). A likely component to the evolution of these attributes is the ability to remember specific social encounters and the changing social conditions among group members. Stimulus-bound actions and semantic memory would not be sufficient to adaptively inform cooperative/competitive decision-making and accommodate rapidly changing social dynamics. This may explain why many autobiographical memories and plans are characterized by social events (Larocque & Oatley, 2006; de Vries & Watt, 1996). The contents of memory and prospection may be necessarily and adaptively tied to things social in nature, potentially the most behaviorally relevant stimuli. As such, the evolutionary advancement of autonoetic awareness would correspond to the neural processes of theory of mind. The utilization of prospection is arguably of greatest strategic importance, particularly in the securing of mates, protection, and resources (Suddendorf & Corballis, 2007; Flinn, Geary, & Ward, 2005).

Both theories of self-projection and scene construction emphasize the role of the medial-temporal lobes (Buckner & Carroll, 2007; Hassabis & Maguire, 2007). Medial-temporal lobe involvement in the core network may reflect a common reliance on mnemonic or relational processes (Moscovitch, Nadel, Winocur, Gilboa, & Rosenbaum, 2006; Eichenbaum, 2000; Squire & Zola-Morgan, 1991). The function of the medial-temporal lobe may also apply more broadly toward the construction of coherent scenes, events (Hassabis & Maguire, 2007), and mental models (Schacter & Addis, 2007). Rich memories allow one to find commonalities between current events and the past. Pattern matching, paired with the flexible reconstruction of information, allows for the application of recollection to social problem-solving. Not all theory-of-mind tasks, however, necessarily require this mnemonic component. The hippocampus may not be necessary to support theory of mind as it does autobiographical memory and other aspects of scene construction (Hassabis & Maguire, 2007; Moscovitch et al., 2006; Maguire, 1997; e.g., Hassabis, Kumaran, Vann, & Maguire, 2007; Rosenbaum et al., 2000) as evidenced in part by two patients with episodic memory impairment who have been shown to perform well on theory-of-mind tasks (Rosenbaum, Stuss, Levine, & Tulving, 2007). Further work will be required to delineate the neural relationship between the interpersonal and the autobiographical.

Although we believe that our approach has many strengths, particularly over tabular meta-analyses and narrative reviews, our method does have some limitations. Lack of direct overlap across all of the domains studied may be due to the relative paucity of published neuroimaging investigations of relevant aspects of navigation (i.e., allocentric recall) and prospection. The small number of available foci for inclusion in these ALE analyses may reduce the probability of identifying reliable clusters. Additionally, because foci are pooled across studies and treated as fixed effects, individual studies may exert undue influence (Wager et al., 2007). Some limitations are tempered by the quantification of cluster coherence provided by the ALE statistic (e.g., few theory-of-mind studies report activity in the medial-temporal region as compared to the medial frontal cortex and the values of the ALE statistic reflects this; see Table 8). Despite its limitations, the ALE technique has demonstrated convergent validity with other approaches to meta-analysis (e.g., tabular methods in the case of autobiographical memory; Svoboda et al., 2006; Gilboa, 2004; see also Laird, McMillan, et al., 2005) while contributing more sophisticated statistical threshold calculations (Laird, Fox, et al., 2005). Additionally, the correspondence we observed between autobiographical memory and default mode is consistent with previous observations (Buckner et al., 2005; Raichle et al., 2001; Andreasen et al., 1995) and validates our approach to determining correspondence of functional neuroanatomy across domains. Causal inferences with respect to the relation between brain region and brain function, however, cannot be made without convergent neuropsychological evidence. Evidence of co-occurring functional deficits across domains due to neurological insult within the core network is less well characterized (for exceptions, see Hassabis, Kumaran, Vann, et al., 2007; Rosenbaum et al., 2000, 2007).

One alternative explanation for our data is that functional similarities between tasks may reflect the coincident activation of multimodal regions, not a core network. Also, neural demands from different domains may recruit similar and overlapping brain areas, but not be functionally dependent upon the same neurons. One other concern is that our analysis relies on group data for each data point, which means that small differences in anatomic localization between individuals are necessarily obscured. In light of this fact, it must be acknowledged that this is a somewhat broad approach and there are likely subtle distinctions that have not been captured. Despite a correspondence of data across more than 1000 participants, correspondence at the individual level remains unknown and certainly worth further investigation.

In this study, we empirically demonstrated reliable patterns of brain activity common across a number of cognitive tasks. In addition to medial prefrontal, medial-temporal, and parietal regions (Buckner & Carroll, 2007), our analysis has revealed evidence of an extended core network that includes the lateral prefrontal cortex, lateral temporal cortex and the occipital lobe. The correspondence of functional neuroanatomy across domains suggests that a core network may be involved in the execution of a broad set of domains. This core network may support a set of processes that promote self-projection (Buckner & Carroll, 2007), scene construction (Hassabis & Maguire, 2007), or some other as yet unidentified cognitive account. Although this meta-analytic study does not allow for a verdict to be delivered regarding these differing theories, it contributes toward the overall endeavor of an exciting, integrative, cross-disciplinary approach to cognitive neuroscience.

Acknowledgments

We thank Donna Addis, Tali Sharot, and Karl Szpuhar for sharing unpublished coordinates; Cheryl Grady for comments on an early version of this manuscript and two anonymous reviewers for insightful comments and suggestions. This work was supported by an award from the Jack and Rita Catherall Research Fund to R. N. S., the Social Sciences and Humanities Research Council of Canada to R. A. M (756-07-0355), and the Ontario Graduate Scholarship program to A. S. N. K.

Reprint requests should be sent to R. Nathan Spreng, Rotman Research Institute, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada, or via e-mail: nathan.spreng@gmail.com.

REFERENCES

Addis
,
D. R.
,
Moscovitch
,
M.
,
Crawley
,
A. P.
, &
McAndrews
,
M. P.
(
2004
).
Recollective qualities modulate hippocampal activation during autobiographical memory retrieval.
Hippocampus
,
14
,
752
762
.
Addis
,
D. R.
,
Wong
,
A. T.
, &
Schacter
,
D. L.
(
2007
).
Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration.
Neuropsychologia
,
45
,
1363
1377
.
Addis
,
D. R.
,
Wong
,
A. T.
, &
Schacter
,
D. L.
(
2008
).
Age-related changes in the episodic simulation of future events.
Psychological Science
,
19
,
33
41
.
Aguirre
,
G. K.
,
Zarahn
,
E.
, &
D'Esposito
,
M.
(
1998
).
Neural components of topographical representation.
Proceedings of the National Academy of Sciences, U.S.A.
,
95
,
839
846
.
Aichhorn
,
M.
,
Perner
,
J.
,
Kronbichler
,
M.
,
Staffen
,
W.
, &
Ladurner
,
G.
(
2006
).
Do visual perspective tasks need theory of mind?
Neuroimage
,
30
,
1059
1068
.
Andreasen
,
N. C.
,
O'Leary
,
D. S.
,
Cizadlo
,
T.
,
Arndt
,
S.
,
Rezai
,
K.
,
Watkins
,
G. L.
,
et al
(
1995
).
Remembering the past: Two facets of episodic memory explored with positron emission tomography.
American Journal of Psychiatry
,
152
,
1576
1585
.
Atance
,
C. M.
, &
O'Neill
,
D. K.
(
2001
).
Episodic future thinking.
Trends in Cognitive Sciences
,
5
,
533
539
.
Avila
,
C.
,
Barros-Loscertales
,
A.
,
Forn
,
C.
,
Mallo
,
R.
,
Parcet
,
M. A.
,
Belloch
,
V.
,
et al
(
2006
).
Memory lateralization with 2 functional MR imaging tasks in patients with lesions in the temporal lobe.
American Journal of Neuroradiology
,
27
,
498
503
.
Berthoz
,
A.
(
1997
).
Parietal and hippocampal contribution to topokinetic and topographic memory.
Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences
,
352
,
1437
1448
.
Berthoz
,
S.
,
Armony
,
J. L.
,
Blair
,
R. J. R.
, &
Dolan
,
R. J.
(
2002
).
An fMRI study of intentional and unintentional (embarrassing) violations of social norms.
Brain
,
125
,
1696
1708
.
Bhatt
,
M.
, &
Camerer
,
C. F.
(
2005
).
Self-referential thinking and equilibrium as states of mind in games: fMRI evidence.
Games and Economic Behavior
,
52
,
424
459
.
Binder
,
J. R.
,
Frost
,
J. A.
,
Hammeke
,
T. A.
,
Bellgowan
,
P. S. F.
,
Rao
,
S. M.
, &
Cox
,
R. W.
(
1999
).
Conceptual processing during the conscious resting state: A functional MRI study.
Journal of Cognitive Neuroscience
,
11
,
80
93
.
Blakemore
,
S.-J.
, &
Decety
,
J.
(
2001
).
From the perception of action to the understanding of intention.
Nature Reviews Neuroscience
,
2
,
561
567
.
Botzung
,
A.
,
Denkova
,
E.
, &
Manning
,
L.
(
2008
).
Experiencing past and future personal events: Functional neuroimaging evidence on the neural bases of mental time travel.
Brain and Cognition
,
66
,
202
212
.
Brett
,
M.
,
Christoff
,
K.
,
Cusack
,
R.
, &
Lancaster
,
J.
(
2001
).
Using the Talairach atlas with the MNI template.
Neuroimage
,
13
,
S85
.
Bruner
,
J.
(
1986
).
Actual minds, possible worlds.
Cambridge, MA
:
Harvard University Press
.
Brunet
,
E.
,
Sarfati
,
Y.
,
Hardy-Bayle
,
M. C.
, &
Decety
,
J.
(
2000
).
A PET investigation of the attribution of intentions with a nonverbal task.
Neuroimage
,
11
,
157
166
.
Buckner
,
R.
,
Andrews-Hanna
,
J.
, &
Schacter
,
D.
(
2008
).
The brain's default network: Anatomy, function and relevance to disease.
Annals of the New York Academy of Sciences
,
1124
,
1
38
.
Buckner
,
R. L.
, &
Carroll
,
D. C.
(
2007
).
Self-projection and the brain.
Trends in Cognitive Sciences
,
11
,
49
57
.
Buckner
,
R. L.
,
Snyder
,
A. Z.
,
Shannon
,
B. J.
,
LaRossa
,
G.
,
Sachs
,
R.
,
Fotenos
,
A. F.
,
et al
(
2005
).
Molecular, structural, and functional characterization of Alzheimer's disease: Evidence for a relationship between default activity, amyloid, and memory.
Journal of Neuroscience
,
25
,
7709
7717
.
Byrne
,
R.
, &
Whiten
,
A.
(
1988
).
Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes, and humans.
Oxford
:
Clarendon Press
.
Cabeza
,
R.
,
Prince
,
S. E.
,
Daselaar
,
S. M.
,
Greenberg
,
D. L.
,
Budde
,
M.
,
Dolcos
,
F.
,
et al
(
2004
).
Brain activity during episodic retrieval of autobiographical and laboratory events: An fMRI study using a novel photo paradigm.
Journal of Cognitive Neuroscience
,
16
,
1583
1594
.
Cabeza
,
R.
, &
St Jacques
,
P.
(
2007
).
Functional neuroimaging of autobiographical memory.
Trends in Cognitive Sciences
,
11
,
219
227
.
Carruthers
,
P.
, &
Smith
,
P. K.
(
1996
).
Theories of theories of mind.
Cambridge
:
Cambridge University Press
.
Castelli
,
F.
,
Frith
,
C.
,
Happe
,
F.
, &
Frith
,
U.
(
2002
).
Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes.
Brain
,
125
,
1839
1849
.
Castelli
,
F.
,
Happe
,
F.
,
Frith
,
U.
, &
Frith
,
C.
(
2000
).
Movement and mind: A functional imaging study of perception and interpretation of complex intentional movement patterns.
Neuroimage
,
12
,
314
325
.
Christoff
,
K.
,
Ream
,
J. M.
, &
Gabrieli
,
J. D. E.
(
2004
).
Neural basis of spontaneous thought processes.
Cortex
,
40
,
623
630
.
Cox
,
R.
(
1996
).
AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages.
Computational Biomedical Research
,
29
,
162
173
.
Craik
,
F. I. M.
,
Moroz
,
T. M.
,
Moscovitch
,
M.
,
Stuss
,
D. T.
,
Winocur
,
G.
,
Tulving
,
E.
,
et al
(
1999
).
In search of the self: A positron emission tomography study.
Psychological Science
,
10
,
26
34
.
D'Argembeau
,
A.
,
Collette
,
F.
,
Van der Linden
,
M.
,
Laureys
,
S.
,
Del Fiore
,
G.
,
Degueldre
,
C.
,
et al
(
2005
).
Self-referential reflective activity and its relationship with rest: A PET study.
Neuroimage
,
25
,
616
624
.
D'Argembeau
,
A.
,
Ruby
,
P.
,
Collette
,
F.
,
Degueldre
,
C.
,
Balteau
,
E.
,
Luxen
,
A.
,
et al
(
2007
).
Distinct regions of the medial prefrontal cortex are associated with self-referential processing and perspective taking.
Journal of Cognitive Neuroscience
,
19
,
935
944
.
D'Argembeau
,
A.
, &
Van der Linden
,
M.
(
2004
).
Phenomenal characteristics associated with projecting oneself back into the past and forward into the future: Influence of valence and temporal distance.
Consciousness and Cognition
,
13
,
844
858
.
D'Argembeau
,
A.
,
Xue
,
G.
,
Lu
,
Z.-L.
,
Van der Linden
,
M.
, &
Bechara
,
A.
(
2008
).
Neural correlates of envisioning emotional events in the near and far future.
Neuroimage
,
40
,
398
407
.
de Vries
,
B.
, &
Watt
,
D.
(
1996
).
A lifetime of events: Age and gender variations in the life story.
International Journal of Aging & Human Development
,
42
,
81
102
.
Denkova
,
E.
,
Botzung
,
A.
, &
Manning
,
L.
(
2006
).
Neural correlates of remembering/knowing famous people: An event-related fMRI study.
Neuropsychologia
,
44
,
2783
2791
.
Denkova
,
E.
,
Botzung
,
A.
,
Scheiber
,
C.
, &
Manning
,
L.
(
2006
).
Implicit emotion during recollection of past events: A nonverbal fMRI study.
Brain Research
,
1078
,
143
150
.
D'Esposito
,
M.
,
Postle
,
B. R.
,
Ballard
,
D.
, &
Lease
,
J.
(
1999
).
Maintenance versus manipulation of information held in working memory: An event-related fMRI study.
Brain and Cognition
,
41
,
66
86
.
Dolan
,
R. J.
, &
Frith
,
C. D.
(
2004
).
Empathy for pain involves affective but not sensory components of pain.
Science
,
303
,
1157
1162
.
Dunbar
,
R. I. M.
(
1993
).
Coevolution of neocortical size, group size and language in humans.
Behavioral and Brain Sciences
,
16
,
681
735
.
Eichenbaum
,
H.
(
2000
).
A cortical-hippocampal system for declarative memory.
Nature Reviews Neuroscience
,
1
,
41
50
.
Farah
,
M. J.
(
1989
).
The neural basis of mental imagery.
Trends in Neurosciences
,
12
,
395
399
.
Ferstl
,
E. C.
, &
von Cramon
,
D. Y.
(
2002
).
What does the frontomedial cortex contribute to language processing: Coherence or theory of mind?
Neuroimage
,
17
,
1599
1612
.
Finger
,
E. C.
,
Marsh
,
A. A.
,
Kamel
,
N.
,
Mitchell
,
D. G. V.
, &
Blair
,
J. R.
(
2006
).
Caught in the act: The impact of audience on the neural response to morally and socially inappropriate behavior.
Neuroimage
,
33
,
414
421
.
Fink
,
G. R.
,
Markowitsch
,
H. J.
,
Reinkemeier
,
M.
,
Bruckbauer
,
T.
,
Kessler
,
J.
, &
Heiss
,
W. D.
(
1996
).
Cerebral representation of one's own past: Neural networks involved in autobiographical memory.
Journal of Neuroscience
,
16
,
4275
4282
.
Fletcher
,
P. C.
,
Happé
,
F.
,
Frith
,
U.
,
Baker
,
S. C.
,
Dolan
,
R. J.
,
Frackowiak
,
R. S.
,
et al
(
1995
).
Other minds in the brain: A functional imaging study of "theory of mind" in story comprehension.
Cognition
,
57
,
109
128
.
Flinn
,
M. V.
,
Geary
,
D. C.
, &
Ward
,
C. V.
(
2005
).
Ecological dominance, social competition, and coalitionary arms races: Why humans evolved extraordinary intelligence.
Evolution and Human Behavior
,
26
,
10
46
.
Fransson
,
P.
(
2006
).
How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations.
Neuropsychologia
,
44
,
2836
2845
.
Fukui
,
H.
,
Murai
,
T.
,
Shinozaki
,
J.
,
Aso
,
T.
,
Fukuyama
,
H.
,
Hayashi
,
T.
,
et al
(
2006
).
The neural basis of social tactics: An fMRI study.
Neuroimage
,
32
,
913
920
.
Gallagher
,
H. L.
, &
Frith
,
C. D.
(
2003
).
Functional imaging of “theory of mind”.
Trends in Cognitive Sciences
,
7
,
77
83
.
Gallagher
,
H. L.
, &
Frith
,
C. D.
(
2004
).
Dissociable neural pathways for the perception and recognition of expressive and instrumental gestures.
Neuropsychologia
,
42
,
1725
1736
.
Garfield
,
J. L.
,
Peterson
,
C. C.
, &
Perry
,
T.
(
2001
).
Social cognition, language acquisition, and the development of theory of mind.
Mind & Language
,
16
,
494
541
.
German
,
T. P.
,
Niehaus
,
J. L.
,
Roarty
,
M. P.
,
Giesbrecht
,
B.
, &
Miller
,
M. B.
(
2004
).
Neural correlates of detecting pretense: Automatic engagement of the intentional stance under covert conditions.
Journal of Cognitive Neuroscience
,
16
,
1805
1817
.
Ghaem
,
O.
,
Mellet
,
E.
,
Crivello
,
F.
,
Tzourio
,
N.
,
Mazoyer
,
B.
,
Berthoz
,
A.
,
et al
(
1997
).
Mental navigation along memorized routes activates the hippocampus, precuneus, and insula.
NeuroReport
,
8
,
739
744
.
Gilbert
,
S. J.
,
Simons
,
J. S.
,
Frith
,
C. D.
, &
Burgess
,
P. W.
(
2006
).
Performance-related activity in medial rostral prefrontal cortex (Area 10) during low-demand tasks.
Journal of Experimental Psychology: Human Perception and Performance
,
32
,
45
48
.
Gilboa
,
A.
(
2004
).
Autobiographical and episodic memory—One and the same? Evidence from prefrontal activation in neuroimaging studies.
Neuropsychologia
,
42
,
1336
1349
.
Gilboa
,
A.
,
Winocur
,
G.
,
Grady
,
C. L.
,
Hevenor
,
S. J.
, &
Moscovitch
,
M.
(
2004
).
Remembering our past: Functional neuroanatomy of recollection of recent and very remote personal events.
Cerebral Cortex
,
14
,
1214
1225
.
Goel
,
V.
,
Grafman
,
J.
,
Sadato
,
N.
, &
Hallett
,
M.
(
1995
).
Modeling other minds.
NeuroReport
,
6
,
1741
1746
.
Gould
,
R. L.
,
Brown
,
R. G.
,
Owen
,
A. M.
,
Bullmore
,
E. T.
, &
Howard
,
R. J.
(
2006
).
Task-induced deactivations during successful paired associates learning: An effect of age but not Alzheimer's disease.
Neuroimage
,
31
,
818
831
.
Graham
,
K. S.
,
Lee
,
A. C. H.
,
Brett
,
M.
, &
Patterson
,
K.
(
2003
).
The neural basis of autobiographical and semantic memory: New evidence from three PET studies.
Cognitive, Affective, & Behavioral Neuroscience
,
3
,
234
254
.
Greenberg
,
D. L.
,
Rice
,
H. J.
,
Cooper
,
J. J.
,
Cabeza
,
R.
,
Rubin
,
D. C.
, &
LaBar
,
K. S.
(
2005
).
Co-activation of the amygdala, hippocampus and inferior frontal gyrus during autobiographical memory retrieval.
Neuropsychologia
,
43
,
659
674
.
Greicius
,
M. D.
,
Krasnow
,
B.
,
Reiss
,
A. L.
, &
Menon
,
V.
(
2003
).
Functional connectivity in the resting brain: A network analysis of the default mode hypothesis.
Proceedings of the National Academy of Sciences, U.S.A.
,
100
,
253
258
.
Greicius
,
M. D.
,
Srivastava
,
G.
,
Reiss
,
A. L.
, &
Menon
,
V.
(
2004
).
Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI.
Proceedings of the National Academy of Sciences, U.S.A.
,
101
,
4637
4642
.
Grèzes
,
J.
,
Frith
,
C.
, &
Passingham
,
R. E.
(
2004
).
Brain mechanisms for inferring deceit in the actions of others.
Journal of Neuroscience
,
24
,
5500
5505
.
Gusnard
,
D. A.
,
Akbudak
,
E.
,
Shulman
,
G. L.
, &
Raichle
,
M. E.
(
2001
).
Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function.
Proceedings of the National Academy of Sciences, U.S.A.
,
98
,
4259
4264
.
Harris
,
L. T.
,
Todorov
,
A.
, &
Fiske
,
S. T.
(
2005
).
Attributions on the brain: Neuro-imaging dispositional inferences, beyond theory of mind.
Neuroimage
,
28
,
763
769
.
Harrison
,
L. M.
,
Duggins
,
A.
, &
Friston
,
K. J.
(
2006
).
Encoding uncertainty in the hippocampus.
Neural Networks
,
19
,
535
546
.
Hartley
,
T.
,
Maguire
,
E. A.
,
Spiers
,
H. J.
, &
Burgess
,
N.
(
2003
).
The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans.
Neuron
,
37
,
877
888
.
Hassabis
,
D.
,
Kumaran
,
D.
, &
Maguire
,
E. A.
(
2007
).
Using imagination to understand the neural basis of episodic memory.
Journal of Neuroscience
,
27
,
14365
14374
.
Hassabis
,
D.
,
Kumaran
,
D.
,
Vann
,
S. D.
, &
Maguire
,
E. A.
(
2007
).
Patients with hippocampal amnesia cannot imagine new experiences.
Proceedings of the National Academy of Sciences, U.S.A.
,
104
,
1726
1731
.
Hassabis
,
D.
, &
Maguire
,
E. A.
(
2007
).
Deconstructing episodic memory with construction.
Trends in Cognitive Sciences
,
11
,
299
306
.
Humphrey
,
N.
(
1976
).
The social function of intellect.
In P. Bateson & R. Hinde (Eds.),
Growing points in ethology
(pp.
303
317
).
Cambridge
:
Cambridge University Press
.
Hutchinson
,
M.
,
Schiffer
,
W.
,
Joseffer
,
S.
,
Liu
,
A.
,
Schlosser
,
R.
,
Dikshit
,
S.
,
et al
(
1999
).
Task-specific deactivation patterns in functional magnetic resonance imaging.
Magnetic Resonance Imaging
,
17
,
1427
1436
.
Iaria
,
G.
,
Chen
,
J. K.
,
Guariglia
,
C.
,
Ptito
,
A.
, &
Petrides
,
M.
(
2007
).
Retrosplenial and hippocampal brain regions in human navigation: Complementary functional contributions to the formation and use of cognitive maps.
European Journal of Neuroscience
,
25
,
890
899
.
Johnson
,
S. C.
,
Baxter
,
L. C.
,
Wilder
,
L. S.
,
Pipe
,
J. G.
,
Heiserman
,
J. E.
, &
Prigatano
,
G. P.
(
2002
).
Neural correlates of self-reflection.
Brain
,
125
,
1808
1814
.
Jordan
,
K.
,
Schadow
,
J.
,
Wuestenberg
,
T.
,
Heinze
,
H. J.
, &
Jancke
,
L.
(
2004
).
Different cortical activations for subjects using allocentric or egocentric strategies in a virtual navigation task.
NeuroReport
,
15
,
135
140
.
Kampe
,
K. K. W.
,
Frith
,
C. D.
, &
Frith
,
U.
(
2003
).
“Hey John”: Signals conveying communicative intention toward the self activate brain regions associated with “mentalizing,” regardless of modality.
Journal of Neuroscience
,
23
,
5258
5263
.
Keen
,
S.
(
2007
).
Empathy and the novel.
New York
:
Oxford University Press
.
Kennedy
,
D. P.
,
Redcay
,
E.
, &
Courchesne
,
E.
(
2006
).
Failing to deactivate: Resting functional abnormalities in autism.
Proceedings of the National Academy of Sciences, U.S.A.
,
103
,
8275
8280
.
Kobayashi
,
C.
,
Glover
,
G. H.
, &
Temple
,
E.
(
2006
).
Cultural and linguistic influence on neural bases of "theory of mind": An fMRI study with Japanese bilinguals.
Brain and Language
,
98
,
210
220
.
Kumaran
,
D.
, &
Maguire
,
E. A.
(
2005
).
The human hippocampus: Cognitive maps or relational memory?
Journal of Neuroscience
,
25
,
7254
7259
.
Laird
,
A. R.
,
Fox
,
P. M.
,
Price
,
C. J.
,
Glahn
,
D. C.
,
Uecker
,
A. M.
,
Lancaster
,
J. L.
,
et al
(
2005
).
ALE meta-analysis: Controlling the false discovery rate and performing statistical contrasts.
Human Brain Mapping
,
25
,
155
164
.
Laird
,
A. R.
,
McMillan
,
K. M.
,
Lancaster
,
J. L.
,
Kochunov
,
P.
,
Turkeltaub
,
P. E.
,
Pardo
,
J. V.
,
et al
(
2005
).
A comparison of label-based review and ALE meta-analysis in the Stroop task.
Human Brain Mapping
,
25
,
6
21
.
Larocque
,
L.
, &
Oatley
,
K.
(
2006
).
Joint plans, emotions, and relationships: A diary study of errors.
Journal of Cultural and Evolutionary Psychology
,
4
,
245
265
.
Levine
,
B.
,
Freedman
,
M.
,
Dawson
,
D.
,
Black
,
S.
, &
Stuss
,
D. T.
(
1999
).
Ventral frontal contribution to self-regulation: Convergence of episodic memory and inhibition.
Neurocase
,
5
,
263
275
.
Levine
,
B.
,
Turner
,
G. R.
,
Tisserand
,
D.
,
Hevenor
,
S. J.
,
Graham
,
S. J.
, &
McIntosh
,
A. R.
(
2004
).
The functional neuroanatomy of episodic and semantic autobiographical remembering: A prospective functional MRI study.
Journal of Cognitive Neuroscience
,
16
,
1633
1646
.
Maddock
,
R. F.
,
Garrett
,
A. S.
, &
Buonocore
,
M. H.
(
2001
).
Remembering familiar people: The posterior cingulate cortex and autobiographical memory retrieval.
Neuroscience
,
104
,
667
676
.
Maguire
,
E. A.
(
1997
).
Hippocampal involvement in human topographical memory: Evidence from functional imaging.
Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences
,
352
,
1475
1480
.
Maguire
,
E. A.
,
Burgess
,
N.
,
Donnett
,
J. G.
,
Frackowiak
,
R. S. J.
,
Frith
,
C. D.
, &
O'Keefe
,
J.
(
1998
).
Knowing where and getting there: A human navigation network.
Science
,
280
,
921
924
.
Maguire
,
E. A.
,
Frackowiak
,
R. S. J.
, &
Frith
,
C. D.
(
1996
).
Learning to find your way: A role for the human hippocampal formation.
Proceedings of the Royal Society of London, Series B, Biological Sciences
,
263
,
1745
1750
.
Maguire
,
E. A.
,
Frackowiak
,
R. S. J.
, &
Frith
,
C. D.
(
1997
).
Recalling routes around London: Activation of the right hippocampus in taxi drivers.
Journal of Neuroscience
,
17
,
7103
7110
.
Maguire
,
E. A.
, &
Frith
,
C. D.
(
2003a
).
Lateral asymmetry in the hippocampal response to the remoteness of autobiographical memories.
Journal of Neuroscience
,
23
,
5302
5307
.
Maguire
,
E. A.
, &
Frith
,
C. D.
(
2003b
).
Aging affects the engagement of the hippocampus during autobiographical memory retrieval.
Brain
,
126
,
1511
1523
.
Maguire
,
E. A.
, &
Mummery
,
C. J.
(
1999
).
Differential modulation of a common memory retrieval network revealed by positron emission tomography.
Hippocampus
,
9
,
54
61
.
Maguire
,
E. A.
,
Mummery
,
C. J.
, &
Buchel
,
C.
(
2000
).
Patterns of hippocampal-cortical interaction dissociate temporal lobe memory subsystems.
Hippocampus
,
10
,
475
482
.
Mar
,
R. A.
(
2004
).
The neuropsychology of narrative: Story comprehension, story production and their interrelation.
Neuropsychologia
,
42
,
1414
1434
.
Mar
,
R. A.
, &
Oatley
,
K.
(
2008
).
The function of fiction is the abstraction and simulation of social experience.
Perspectives on Psychological Science
,
13
,
173
192
.
Mar
,
R. A.
,
Oatley
,
K.
,
Hirsh
,
J.
,
dela Paz
,
J.
, &
Peterson
,
J. B.
(
2006
).
Bookworms versus nerds: Exposure to fiction versus non-fiction, divergent associations with social ability, and the simulation of fictional social worlds.
Journal of Research in Personality
,
40
,
694
712
.
Markowitsch
,
H. J.
,
Thiel
,
A.
,
Reinkemeier
,
M.
,
Kessler
,
J.
,
Koyuncu
,
A.
, &
Heiss
,
W. D.
(
2000
).
Right amygdalar and temporofrontal activation during autobiographic, but not during fictitious memory retrieval.
Behavioural Neurology
,
12
,
181
190
.
Markowitsch
,
H. J.
,
Vandekerckhove
,
M. M. P.
,
Lanfermann
,
H.
, &
Russ
,
M. O.
(
2003
).
Engagement of lateral and medial prefrontal areas in the ecphory of sad and happy autobiographical memories.
Cortex
,
39
,
643
665
.
Martin
,
A.
, &
Chao
,
L. L.
(
2001
).
Semantic memory and the brain: Structure and processes.
Current Opinion in Neurobiology
,
11
,
194
201
.
Mason
,
M. F.
,
Norton
,
M. I.
,
Van Horn
,
J. D.
,
Wegner
,
D. M.
,
Grafton
,
S. T.
, &
Macrae
,
C. N.
(
2007
).
Wandering minds: The default network and stimulus-independent thought.
Science
,
315
,
393
395
.
Mayes
,
A. R.
,
Montaldi
,
D.
,
Spencer
,
T. J.
, &
Roberts
,
N.
(
2004
).
Recalling spatial information as a component of recently and remotely acquired episodic or semantic memories: An fMRI study.
Neuropsychology
,
18
,
426
441
.
Mazoyer
,
B.
,
Zago
,
L.
,
Mellet
,
E.
,
Bricogne
,
S.
,
Etard
,
O.
,
Houdé
,
O.
,
et al
(
2001
).
Cortical networks for working memory and executive functions sustain the conscious resting state in man.
Brain Research Bulletin
,
54
,
287
298
.
McGuire
,
P. K.
,
Paulesu
,
E.
,
Frackowiak
,
R. S. J.
, &
Frith
,
C. D.
(
1996
).
Brain activity during stimulus independent thought.
NeuroReport
,
7
,
2095
2099
.
McKiernan
,
K. A.
,
Kaufman
,
J. N.
,
Kucera-Thompson
,
J.
, &
Binder
,
J. R.
(
2003
).
A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging.
Journal of Cognitive Neuroscience
,
15
,
394
408
.
Mellet
,
E.
,
Bricogne
,
S.
,
Crivello
,
F.
,
Mazoyer
,
B.
,
Denis
,
M.
, &
Tzourio-Mazoyer
,
N.
(
2002
).
Neural basis of mental scanning of a topographic representation built from a text.
Cerebral Cortex
,
12
,
1322
1330
.
Mitchell
,
J. P.
,
Banaji
,
M. R.
, &
Macrae
,
C. N.
(
2005
).
The link between social cognition and self-referential thought in the medial prefrontal cortex.
Journal of Cognitive Neuroscience
,
17
,
1306
1315
.
Mitchell
,
J. P.
,
Macrae
,
C. N.
, &
Banaji
,
M. R.
(
2006
).
Dissociable medial prefrontal contributions to judgments of similar and dissimilar others.
Neuron
,
50
,
655
663
.
Moscovitch
,
M.
,
Nadel
,
L.
,
Winocur
,
G.
,
Gilboa
,
A.
, &
Rosenbaum
,
R. S.
(
2006
).
The cognitive neuroscience of remote episodic, semantic and spatial memory.
Current Opinion in Neurobiology
,
16
,
179
190
.
Northoff
,
G.
, &
Bermpohl
,
F.
(
2004
).
Cortical midline structures and the self.
Trends in Cognitive Sciences
,
8
,
102
107
.
Oatley
,
K.
(
1999
).
Why fiction may be twice as true as fact: Fiction as cognitive and emotional simulation.
Review of General Psychology
,
3
,
101
117
.
Ochsner
,
K. N.
,
Beer
,
J. S.
,
Robertson
,
E. R.
,
Cooper
,
J. C.
,
Gabrieli
,
J. D. E.
,
Kihsltrom
,
J. F.
,
et al
(
2005
).
The neural correlates of direct and reflected self-knowledge.
Neuroimage
,
28
,
797
814
.
Ohnishi
,
T.
,
Moriguchi
,
Y.
,
Matsuda
,
H.
,
Mori
,
T.
,
Hirakata
,
M.
,
Imabayashi
,
E.
,
et al
(
2004
).
The neural network for the mirror system and mentalizing in normally developed children: An fMRI study.
NeuroReport
,
15
,
1483
1487
.
Okuda
,
J.
,
Fujii
,
T.
,
Ohtake
,
H.
,
Tsukiura
,
T.
,
Tanji
,
K.
,
Suzuki
,
K.
,
et al
(
2003
).
Thinking of the future and past: The roles of the frontal pole and the medial temporal lobes.
Neuroimage
,
19
,
1369
1380
.
Palmer
,
A.
(
2004
).
Fictional minds.
Lincoln
:
University of Nebraska Press
.
Parslow
,
D. M.
,
Rose
,
D.
,
Brooks
,
B.
,
Fleminger
,
S.
,
Gray
,
J. A.
,
Giampietro
,
V.
,
et al
(
2004
).
Allocentric spatial memory activation of the hippocampal formation measured with fMRI.
Neuropsychology
,
18
,
450
461
.
Perner
,
J.
(
2000
).
Memory and theory of mind.
In F. I. M. Craik & E. Tulving (Eds.),
Oxford handbook of memory
(pp.
297
312
).
New York
:
Oxford University Press
.
Perner
,
J.
,
Aichhorn
,
M.
,
Kronbichler
,
M.
,
Staffen
,
W.
, &
Ladurner
,
G.
(
2006
).
Thinking of mental and other representations: The roles of left and right temporo-parietal junction.
Social Neuroscience
,
1
,
245
258
.
Persson
,
J.
,
Lustig
,
C.
,
Nelson
,
J. K.
, &
Reuter-Lorenz
,
P. A.
(
2007
).
Age differences in deactivation: A link to cognitive control?
Journal of Cognitive Neuroscience
,
19
,
1021
1032
.
Peskin
,
J.
, &
Astington
,
J. W.
(
2004
).
The effects of adding metacognitive language to story texts.
Cognitive Development
,
19
,
253
273
.
Piefke
,
M.
,
Weiss
,
P. H.
,
Zilles
,
K.
,
Markowitsch
,
H. J.
, &
Fink
,
G. R.
(
2003
).
Differential remoteness and emotional tone modulate the neural correlates of autobiographical memory.
Brain
,
126
,
650
668
.
Pine
,
D. S.
,
Grun
,
J.
,
Maguire
,
E. A.
,
Burgess
,
N.
,
Zarahn
,
E.
,
Koda
,
V.
,
et al
(
2002
).
Neurodevelopmental aspects of spatial navigation: A virtual reality fMRI study.
Neuroimage
,
15
,
396
406
.
Platek
,
S. M.
,
Keenan
,
J. P.
,
Gallup
,
G. G.
, &
Mohamed
,
F. B.
(
2004
).
Where am I? The neurological correlates of self and other.
Cognitive Brain Research
,
19
,
114
122
.
Raichle
,
M. E.
, &
Gusnard
,
D. A.
(
2005
).
Intrinsic brain activity sets the stage for expression of motivated behavior.
Journal of Comparative Neurology
,
493
,
167
176
.
Raichle
,
M. E.
,
MacLeod
,
A. M.
,
Snyder
,
A. Z.
,
Powers
,
W. J.
,
Gusnard
,
D. A.
, &
Shulman
,
G. L.
(
2001
).
A default mode of brain function.
Proceedings of the National Academy of Sciences, U.S.A.
,
98
,
676
682
.
Rekkas
,
P. V.
, &
Constable
,
R. T.
(
2005
).
Evidence that autobiographic memory retrieval does not become independent of the hippocampus: An fMRI study contrasting very recent with remote events.
Journal of Cognitive Neuroscience
,
17
,
1950
1961
.
Rilling
,
J. K.
,
Sanfey
,
A. G.
,
Aronson
,
J. A.
,
Nystrom
,
L. E.
, &
Cohen
,
J. D.
(
2004
).
The neural correlates of theory of mind within interpersonal interactions.
Neuroimage
,
22
,
1694
1703
.
Rosenbaum
,
R. S.
,
Priselac
,
S.
,
Kohler
,
S.
,
Black
,
S. E.
,
Gao
,
F. Q.
,
Nadel
,
L.
,
et al
(
2000
).
Remote spatial memory in an amnesic person with extensive bilateral hippocampal lesions.
Nature Neuroscience
,
3
,
1044
1048
.
Rosenbaum
,
R. S.
,
Stuss
,
D. T.
,
Levine
,
B.
, &
Tulving
,
E.
(
2007
).
Theory of mind is independent of episodic memory.
Science
,
318
,
1257
.
Rosenbaum
,
R. S.
,
Ziegler
,
M.
,
Winocur
,
G.
,
Grady
,
C. L.
, &
Moscovitch
,
M.
(
2004
).
“I have often walked down this street before”: fMRI studies on the hippocampus and other structures during mental navigation of an old environment.
Hippocampus
,
14
,
826
835
.
Ruby
,
P.
, &
Decety
,
J.
(
2003
).
What you believe versus what you think they believe: A neuroimaging study of conceptual perspective-taking.
European Journal of Neuroscience
,
17
,
2475
2480
.
Russell
,
T. A.
,
Rubia
,
K.
,
Bullmore
,
E. T.
,
Soni
,
W.
,
Suckling
,
J.
,
Brammer
,
M. J.
,
et al
(
2000
).
Exploring the social brain in schizophrenia: Left prefrontal underactivation during mental state attribution.
American Journal of Psychiatry
,
157
,
2040
2042
.
Saxe
,
R.
, &
Kanwisher
,
N.
(
2003
).
People thinking about thinking people—The role of the temporo-parietal junction in “theory of mind”.
Neuroimage
,
19
,
1835
1842
.
Saxe
,
R.
,
Schulz
,
L. E.
, &
Jiang
,
Y. V.
(
2006
).
Reading minds versus following rules: Dissociating theory of mind and executive control in the brain.
Social Neuroscience
,
1
,
284
298
.
Saxe
,
R.
, &
Wexler
,
A.
(
2005
).
Making sense of another mind: The role of the right temporo-parietal junction.
Neuropsychologia
,
43
,
1391
1399
.
Schacter
,
D.
, &
Addis
,
D.
(
2007
).
The cognitive neuroscience of constructive memory: Remembering the past and imagining the future.
Philosophical Transactions of the Royal Society: Series B, Biological Sciences
,
362
,
773
786
.
Schacter
,
D.
,
Addis
,
D.
, &
Buckner
,
R.
(
2007
).
Remembering the past to imagine the future: The prospective brain.
Nature Reviews Neuroscience
,
8
,
657
661
.
Schacter
,
D. L.
,
Addis
,
D. R.
, &
Buckner
,
R.
(
2008
).
Episodic simulation of future events: Concepts, data and applications.
Annals of the New York Academy of Sciences
,
1124
,
39
60
.
Schilbach
,
L.
,
Wohlschlaeger
,
A. M.
,
Kraemer
,
N. C.
,
Newen
,
A.
,
Shah
,
N. J.
,
Fink
,
G. R.
,
et al
(
2006
).
Being with virtual others: Neural correlates of social interaction.
Neuropsychologia
,
44
,
718
730
.
Sharot
,
T.
,
Riccardi
,
A. M.
,
Raio
,
C. M.
, &
Phelps
,
E. A.
(
2007
).
Neural mechanisms mediating optimism bias.
Nature
,
450
,
102
105
.
Shulman
,
G. L.
,
Fiez
,
J. A.
,
Corbetta
,
M.
,
Buckner
,
R. L.
,
Miezin
,
F. M.
,
Raichle
,
M. E.
,
et al
(
1997
).
Common blood flow changes across visual tasks:II. Decreases in cerebral cortex.
Journal of Cognitive Neuroscience
,
9
,
648
663
.
Spiers
,
H. J.
, &
Maguire
,
E. A.
(
2006a
).
Thoughts, behaviour, and brain dynamics during navigation in the real world.
Neuroimage
,
31
,
1826
1840
.
Spiers
,
H. J.
, &
Maguire
,
E. A.
(
2006b
).
Spontaneous mentalizing during an interactive real world task: An fMRI study.
Neuropsychologia
,
44
,
1674
1682
.
Spiers
,
H. J.
, &
Maguire
,
E. A.
(
2007
).
The neuroscience of remote spatial memory: A tale of two cities.
Neuroscience
,
149
,
7
27
.
Spreng
,
R. N.
, &
Levine
,
B.
(
2006
).
The temporal distribution of past and future autobiographical events across the lifespan.
Memory & Cognition
,
34
,
1644
1651
.
Squire
,
L. R.
, &
Zola-Morgan
,
S.
(
1991
).
The medial temporal lobe memory system.
Science
,
253
,
1380
1386
.
Stich
,
S.
, &
Nichols
,
S.
(
1992
).
Folk psychology: Simulation or tacit theory?
Mind and Language
,
7
,
35
71
.
Suddendorf
,
T.
, &
Corballis
,
M. C.
(
1997
).
Mental time travel and the evolution of the human mind.
Genetic Social and General Psychology Monographs
,
123
,
133
167
.
Suddendorf
,
T.
, &
Corballis
,
M. C.
(
2007
).
The evolution of foresight: What is mental time travel and is it unique to humans?
Behavioral and Brain Sciences
,
30
,
299
351
.
Sugiura
,
M.
,
Friston
,
K. J.
,
Willmes
,
K.
,
Shah
,
N. J.
,
Zilles
,
K.
, &
Fink
,
G. R.
(
2007
).
Analysis of intersubject variability in activation: An application to the incidental episodic retrieval during recognition test.
Human Brain Mapping
,
28
,
49
58
.
Svoboda
,
E.
,
McKinnon
,
M. C.
, &
Levine
,
B.
(
2006
).
The functional neuroanatomy of autobiographical memory: A meta-analysis.
Neuropsychologia
,
44
,
2189
2208
.
Szpunar
,
K. K.
,
Watson
,
J. M.
, &
McDermott
,
K. B.
(
2007
).
Neural substrates of envisioning the future.
Proceedings of the National Academy of Sciences, U.S.A.
,
104
,
642
647
.
Talairach
,
J.
, &
Tournoux
,
P.
(
1988
).
Co-planar stereotaxic atlas of the human brain.
New York
:
Thieme
.
Tsukiura
,
T.
,
Fujii
,
T.
,
Okuda
,
J.
,
Ohtake
,
H.
,
Kawashima
,
M.
,
Itoh
,
M.
,
et al
(
2003
).
Time-dependent contribution of the hippocampal complex when remembering the past: A PET study.
NeuroReport
,
13
,
2319
2323
.
Tulving
,
E.
(
1985
).
Memory and consciousness.
Canadian Psychology
,
26
,
1
12
.
Turkeltaub
,
P. E.
,
Eden
,
G. F.
,
Jones
,
K. M.
, &
Zeffiro
,
T. A.
(
2002
).
Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation.
Neuroimage
,
16
,
765
780
.
Vandekerckhove
,
M. M. P.
,
Markowitsch
,
H. J.
,
Mertens
,
M.
, &
Woermann
,
F. G.
(
2005
).
Bi-hemispheric engagement in the retrieval of autobiographical episodes.
Behavioural Neurology
,
16
,
203
210
.
Viard
,
A.
,
Piolino
,
P.
,
Desgranges
,
B.
,
Chetelat
,
G.
,
Lebreton
,
K.
,
Landeau
,
B.
,
et al
(
2007
).
Hippocampal activation for autobiographical memories over the entire lifetime in healthy aged subjects: An fMRI study.
Cerebral Cortex
,
17
,
2453
2467
.
Vogeley
,
K.
,
Bussfeld
,
P.
,
Newen
,
A.
,
Herrmann
,
S.
,
Happe
,
F.
,
Falkai
,
P.
,
et al
(
2001
).
Mind reading: Neural mechanisms of theory of mind and self-perspective.
Neuroimage
,
14
,
170
181
.
Vollm
,
B. A.
,
Taylor
,
A. N. W.
,
Richardson
,
P.
,
Corcoran
,
R.
,
Stirling
,
J.
,
McKie
,
S.
,
et al
(
2006
).
Neuronal correlates of theory of mind and empathy: A functional magnetic resonance imaging study in a nonverbal task.
Neuroimage
,
29
,
90
98
.
Wager
,
T. D.
,
Lindquist
,
M.
, &
Kaplan
,
L.
(
2007
).
Meta-analysis of functional neuroimaging data: Current and future directions.
Social Cognitive and Affective Neuroscience
,
2
,
150
158
.
Walter
,
H.
,
Adenzato
,
M.
,
Ciaramidaro
,
A.
,
Enrici
,
I.
,
Pia
,
L.
, &
Bara
,
B. G.
(
2004
).
Understanding intentions in social interaction: The role of the anterior paracingulate cortex.
Journal of Cognitive Neuroscience
,
16
,
1854
1863
.
Wheeler
,
M. A.
,
Stuss
,
D. T.
, &
Tulving
,
E.
(
1997
).
Toward a theory of episodic memory: The frontal lobes and autonoetic consciousness.
Psychological Bulletin
,
121
,
331
354
.
Wicker
,
B.
,
Perrett
,
D. I.
,
Baron-Cohen
,
S.
, &
Decety
,
J.
(
2003
).
Being the target of another's emotion: A PET study.
Neuropsychologia
,
41
,
139
146
.
Wicker
,
B.
,
Ruby
,
P.
,
Royet
,
J. P.
, &
Fonlupt
,
P.
(
2003
).
A relation between rest and the self in the brain?
Brain Research Reviews
,
43
,
224
230
.
Xu
,
J.
,
Kemeny
,
S.
,
Park
,
G.
,
Frattali
,
C.
, &
Braun
,
A.
(
2005
).
Language in context: Emergent features of word, sentence, and narrative comprehension.
Neuroimage
,
25
,
1002
1015
.
Zunshine
,
L.
(
2006
).
Why we read fiction: Theory of mind and the novel.
Columbus
:
Ohio State University Press
.