Perceptual filling-in is the phenomenon where visual information is perceived although information is not physically present. For instance, the blind spot, which corresponds to the retinal location where there are no photoreceptor cells to capture the visual signals, is filled-in by the surrounding visual signals. The neural mechanism for such immediate filling-in of surfaces is unclear. By means of computational modeling, we show that surround inhibition produces rebound or after-discharge spiking in neurons that otherwise do not receive sensory information. The behavior of rebound spiking mimics the immediate surface filling-in illusion observed at the blind spot and also reproduces the filling-in of an empty object after a background flash, like in the color dove illusion. In conclusion, we propose rebound spiking as a possible neural mechanism for surface filling-in.

You do not currently have access to this content.