Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Álvaro Darriba
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (6): 984–1002.
Published: 01 May 2021
FIGURES
| View All (10)
Abstract
View article
PDF
Humans live in a volatile environment, subject to changes occurring at different timescales. The ability to adjust internal predictions accordingly is critical for perception and action. We studied this ability with two EEG experiments in which participants were presented with sequences of four Gabor patches, simulating a rotation, and instructed to respond to the last stimulus (target) to indicate whether or not it continued the direction of the first three stimuli. Each experiment included a short-term learning phase in which the probabilities of these two options were very different ( p = .2 vs. p = .8, Rules A and B, respectively), followed by a neutral test phase in which both probabilities were equal. In addition, in one of the experiments, prior to the short-term phase, participants performed a much longer long-term learning phase where the relative probabilities of the rules predicting targets were opposite to those of the short-term phase. Analyses of the RTs and P3 amplitudes showed that, in the neutral test phase, participants initially predicted targets according to the probabilities learned in the short-term phase. However, whereas participants not pre-exposed to the long-term learning phase gradually adjusted their predictions to the neutral probabilities, for those who performed the long-term phase, the short-term associations were spontaneously replaced by those learned in that phase. This indicates that the long-term associations remained intact whereas the short-term associations were learned, transiently used, and abandoned when the context changed. The spontaneous recovery suggests independent storage and control of long-term and short-term associations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (2): 337–350.
Published: 01 February 2012
FIGURES
| View All (6)
Abstract
View article
PDF
Despite the importance of change detection (CD) for visual perception and for performance in our environment, observers often miss changes that should be easily noticed. In the present study, we employed time–frequency analysis to investigate the neural activity associated with CD and change blindness (CB). Observers were presented with two successive visual displays and had to look for a change in orientation in any one of four sinusoid gratings between both displays. Theta power increased widely over the scalp after the second display when a change was consciously detected. Relative to no-change and CD, CB was associated with a pronounced theta power enhancement at parietal-occipital and occipital sites and broadly distributed alpha power suppression during the processing of the prechange display. Finally, power suppressions in the beta band following the second display show that, even when a change is not consciously detected, it might be represented to a certain degree. These results show the potential of time–frequency analysis to deepen our knowledge of the temporal curse of the neural events underlying CD. The results further reveal that the process resulting in CB begins even before the occurrence of the change itself.