Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Aarthi Padmanabhan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (4): 978–991.
Published: 01 April 2011
FIGURES
| View All (7)
Abstract
View article
PDF
One of the classic categorical divisions in the history of memory research is that between short-term and long-term memory. Indeed, because memory for the immediate past (a few seconds) and memory for the relatively more remote past (several seconds and beyond) are assumed to rely on distinct neural systems, more often than not, memory research has focused either on short- (or “working memory”) or on long-term memory. Using an auditory–verbal continuous recognition paradigm designed for fMRI, we examined how the neural signatures of recognition memory change across an interval of time (from 2.5 to 30 sec) that spans this hypothetical division between short- and long-term memory. The results revealed that activity during successful auditory–verbal item recognition in inferior parietal cortex and the posterior superior temporal lobe was maximal for early lags, whereas, conversely, activity in the left inferior frontal gyrus increased as a function of lag. Taken together, the results reveal that as the interval between item repetitions increases, there is a shift in the distribution of memory-related activity that moves from posterior temporo-parietal cortex (lags 1–4) to inferior frontal regions (lags 5–10), indicating that as time advances, the burden of recognition memory is increasingly placed on top–down retrieval mechanisms that are mediated by structures in inferior frontal cortex.