Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Adam Tierney
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (1): 14–24.
Published: 01 January 2018
FIGURES
Abstract
View article
PDF
Musical rhythm engages motor and reward circuitry that is important for cognitive control, and there is evidence for enhanced inhibitory control in musicians. We recently revealed an inhibitory control advantage in percussionists compared with vocalists, highlighting the potential importance of rhythmic expertise in mediating this advantage. Previous research has shown that better inhibitory control is associated with less variable performance in simple sensorimotor synchronization tasks; however, this relationship has not been examined through the lens of rhythmic expertise. We hypothesize that the development of rhythm skills strengthens inhibitory control in two ways: by fine-tuning motor networks through the precise coordination of movements “in time” and by activating reward-based mechanisms, such as predictive processing and conflict monitoring, which are involved in tracking temporal structure in music. Here, we assess adult percussionists and nonpercussionists on inhibitory control, selective attention, basic drumming skills (self-paced, paced, and continuation drumming), and cortical evoked responses to an auditory stimulus presented on versus off the beat of music. Consistent with our hypotheses, we find that better inhibitory control is correlated with more consistent drumming and enhanced neural tracking of the musical beat. Drumming variability and the neural index of beat alignment each contribute unique predictive power to a regression model, explaining 57% of variance in inhibitory control. These outcomes present the first evidence that enhanced inhibitory control in musicians may be mediated by rhythmic expertise and provide a foundation for future research investigating the potential for rhythm-based training to strengthen cognitive function.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (5): 855–868.
Published: 01 May 2017
FIGURES
Abstract
View article
PDF
Durational patterns provide cues to linguistic structure, thus so variations in rhythm skills may have consequences for language development. Understanding individual differences in rhythm skills, therefore, could help explain variability in language abilities across the population. We investigated the neural foundations of rhythmic proficiency and its relation to language skills in young adults. We hypothesized that rhythmic abilities can be characterized by at least two constructs, which are tied to independent language abilities and neural profiles. Specifically, we hypothesized that rhythm skills that require integration of information across time rely upon the consistency of slow, low-frequency auditory processing, which we measured using the evoked cortical response. On the other hand, we hypothesized that rhythm skills that require fine temporal precision rely upon the consistency of fast, higher-frequency auditory processing, which we measured using the frequency-following response. Performance on rhythm tests aligned with two constructs: rhythm sequencing and synchronization. Rhythm sequencing and synchronization were linked to the consistency of slow cortical and fast frequency-following responses, respectively. Furthermore, whereas rhythm sequencing ability was linked to verbal memory and reading, synchronization ability was linked only to nonverbal auditory temporal processing. Thus, rhythm perception at different time scales reflects distinct abilities, which rely on distinct auditory neural resources. In young adults, slow rhythmic processing makes the more extensive contribution to language skills.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (2): 400–408.
Published: 01 February 2015
FIGURES
| View All (6)
Abstract
View article
PDF
The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologically valid music. Here we presented participants with a single pop song with a superimposed bassoon sound. This stimulus was either lined up with the beat of the music or shifted away from the beat by 25% of the average interbeat interval. Both conditions elicited a neural response at the beat frequency. However, although the on-the-beat condition elicited a clear response at the first harmonic of the beat, this frequency was absent in the neural response to the off-the-beat condition. These results support a role for neural entrainment in tracking the metrical structure of real music and show that neural meter tracking can be disrupted by the presentation of contradictory rhythmic cues.