Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Alain Berthoz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (10): 1827–1838.
Published: 01 October 2008
Abstract
View article
PDF
Humans demonstrate an amazing ability for intercepting and catching moving targets, most noticeably in fast-speed ball games. However, the few studies exploring the neural bases of interception in humans and the classical studies on visual motion processing and visuomotor interactions have reported rather long latencies of cortical activations that cannot explain the performances observed in most natural interceptive actions. The aim of our experiment was twofold: (1) describe the spatio-temporal unfolding of cortical activations involved in catching a moving target and (2) provide evidence that fast cortical responses can be elicited by a visuomotor task with high temporal constraints and decide if these responses are task or stimulus dependent. Neuromagnetic brain activity was recorded with whole-head coverage while subjects were asked to catch a free-falling ball or simply pay attention to the ball trajectory. A fast, likely stimulus-dependent, propagation of neural activity was observed along the dorsal visual pathway in both tasks. Evaluation of latencies of activations in the main cortical regions involved in the tasks revealed that this entire network of regions was activated within 40 msec. Moreover, comparison of experimental conditions revealed similar patterns of activation except in contralateral sensorimotor regions where common and catch-specific activations were differentiated.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (9): 1517–1535.
Published: 01 November 2004
Abstract
View article
PDF
Functional magnetic resonance imaging was used to compare the neural correlates of three different types of spatial coding, which are implicated in crucial cognitive functions of our everyday life, such as visuomotor coordination and orientation in topographical space. By manipulating the requested spatial reference during a task of relative distance estimation, we directly compared viewer-centered, object-centered, and landmark-centered spatial coding of the same realistic 3-D information. Common activation was found in bilateral parietal, occipital, and right frontal premotor regions. The retrosplenial and ventromedial occipital–temporal cortex (and parts of the parietal and occipital cortex) were significantly more activated during the landmark-centered condition. The ventrolateral occipital–temporal cortex was particularly involved in object-centered coding. Results strongly demonstrate that viewer-centered (egocentric) coding is restricted to the dorsal stream and connected frontal regions, whereas a coding centered on external references requires both dorsal and ventral regions, depending on the reference being a movable object or a landmark.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (4): 569–582.
Published: 01 July 2000
Abstract
View article
PDF
Under appropriate conditions, an observer's memory for the final position of an abruptly halted moving object is distorted in the direction of the represented motion. This phenomenon is called “representational momentum” (RM). We examined the effect of mental imagery instructions on the modulation of spatial orientation processing by testing for RM under conditions of picture versus body rotation perception and imagination. Behavioral data were gathered via classical reaction time and error measurements, whereas brain activity was recorded with the help of magnetoence-phalography (MEG). Due to the so-called inverse problem and to signal complexity, results were described at the signal level rather than with the source location modeling. Brain magnetic field strength and spatial distribution, as well as latency of P200m evoked fields were used as neurocognitive markers. A task was devised where a subject examined a rotating sea horizon as seen from a virtual boat in order to extrapolate either the picture motion or the body motion relative to the picture while the latter disappeared temporarily until a test-view was displayed as a final orientation candidate. Results suggest that perceptual interpretation and extrapolation of visual motion in the roll plane capitalize on the fronto-parietal cortical networks involving working memory processes. Extrapolation of the rotational dynamics of sea horizon revealed a RM effect simulating the role of gravity in rotational equilibrium. Modulation of the P200m component reflected spatial orientation processing and a non-voluntary detection of an incongruity between displayed and expected final orientations given the implied motion. Neuromagnetic properties of anticipatory (Contingent Magnetic Variation) and evoked (P200m) brain magnetic fields suggest, respectively, differential allocation of attentional resources by mental imagery instructions (picture vs. body tilt), and a communality of neural structures (in the right centro-parietal region) for the control of both RM and mental rotation processes. Finally, the RM of the body motion is less prone to forward shifts than that of picture motion evidencing an internalization of the implied mass of the virtual body of the observer.