Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Alberto Zani
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (11): 3197–3208.
Published: 01 November 2011
FIGURES
| View All (8)
Abstract
View article
PDF
It is known that infant faces stimulate visual and anterior brain regions belonging to the mesocortical limbic system (orbito-frontal cortex, anterior cingulate cortex, and nucleus accumbens) as well as the fusiform gyrus during face coding, suggesting a preferential response to baby schema. In the present investigation, faces of infants, children, and adults were presented to 40 male and female right-handed university students with technological objects (and inanimate scenarios to serve as targets) in a randomly mixed fashion. EEG was recorded from 128 scalp sites. In both sexes, the N1 response to infant faces was larger than the response to adult faces; however, the baby-specific N1 response was much larger in women than in men across the left hemisphere. The anterior N2 response to infants was greater than the response to children only in women, whereas the response to children of any age was larger than the response to adults in men. LORETA identified the intracranial sources of N2 response to infants in the left fusiform gyrus (FG), as well as the uncus, cingulate, and orbito-frontal cortices. The FG, the limbic, and especially the orbito-frontal sources were much larger in women than in men. The data suggest a sex difference in the brain response to faces of different ages and in the preferential response to infants, especially with regard to activation of the mesocorticolimbic system.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (2): 301–317.
Published: 01 March 2004
Abstract
View article
PDF
Neuroimaging has provided evidence that the first stages of visual word recognition activate a visual word-form center localized in the left extrastriate cortex (fusiform gyrus). Accordingly, neurological cases of patients suffering from pure alexia reported the left posterior occipital lobe as the possible locus of orthographic analysis. There is less agreement in the literature about which brain structures are involved in the subsequent stages of word processing and, in particular, their time course of activation. Functional magnetic resonance imaging and magnetic source imaging studies recently reported data that could indicate a dual route model of reading. These findings are particularly relevant to studies on the functional deficits associated with phonological and surface dyslexia. There is evidence for the existence of two different brain mechanisms supporting phonological processing in visual word recognition: one mechanism subserving “assembled phonology” for reading letter strings and another one subserving “addressed phonology” for reading meaningful words. However, available knowledge on the time course and neural locus of grapheme-to-phoneme conversion mechanisms in reading is still inadequate. In this study, we compared processing of meaningful and meaningless Italian words in a task requiring a phonemic/phonetic decision task. Stimuli were 1152 different orthographic stimuli presented in the central visual field. Half the stimuli were Italian words (with a high or low frequency of occurrence), the other half were meaningless strings of letters (legal pseudowords and letter strings). Event-related potentials were recorded from 28 scalp sites in 10 Italian university students. The task consisted of deciding about the presence/absence of a given “phone” in the hypothetical enunciation of word read: for example, “Is there a/k/in cheese?”. Results showed that lexical frequency and orthographical regularity affected linguistic processing within 150 msec poststimulus. Indeed, the amplitude of a centroparietal P150 varied as a function of stimulus type, being larger in response to high-frequency words than to lowfrequency ones and to words and pseudowords than to letter strings. This component might index visual categorization processes and recognition of familiar objects, being highly sensitive to orthographic regularity and “ill-formedness” of words. The amplitude of the P150 was the same in response to well-formed meaningless and to meaningful words, when these latter had a low lexical frequency. This might indicate that highly familiar words are recognized as meaningful unitary visual objects at very early stages of processing, through a visual route to an orthographic input lexicon. Moreover, the amplitude of the negativity recorded between 250 and 350 msec showed an anteroposterior topographic dissociation for access to the phonemic representation of wellor ill-formed strings of characters. Brain responses were larger over the left occipito-temporal regions during reading of words and pseudowords and over the left frontal regions during reading of letter strings.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (7): 994–1017.
Published: 01 October 2002
Abstract
View article
PDF
The aim of the present study was to investigate how multiple languages are represented in the human brain. Event-related brain potentials (ERPs) were recorded from right-handed polyglots and monolinguals during a task involving silent reading. The participants in the experiment were nine Italian monolinguals and nine Italian/Slovenian bilinguals of a Slovenian minority in Trieste; the bilinguals, highly fluent in both languages, had spoken both languages since birth. The stimuli were terminal words that would correctly complete a short, meaningful, previously shown sentence, or else were semantically or syntactically incorrect. The task consisted in deciding whether the sentences were well formed or not, giving the response by pressing a button. Both groups read the same set of 200 Italian sentences to compare the linguistic processing, while the bilinguals also received a set of 200 Slovenian sentences, comparable in complexity and length, to compare the processing of the two languages within the group. For the bilinguals, the ERP results revealed a strong, left-sided activation, reflected by the N1 component, of the occipito-temporal regions dedicated to orthographic processing, with a latency of about 150 msec for Slovenian words, but bilateral activation of the same areas for Italian words, which was also displayed by topographical mapping. In monolinguals, semantic error produced a long-lasting negative response (N2 and N4) that was greater over the right hemisphere, whereas syntactic error activated mostly the left hemisphere. Conversely, in the bilinguals, semantic incongruence resulted in greater response over the left hemisphere than over the right. In this group, the P615 syntactical error responses were of equal amplitude on both hemispheres for Italian words and greater on the right side for Slovenian words. The present findings support the view that there are inter- and intrahemispheric brain activation asymmetries when monolingual and bilingual speakers comprehend written language. The fact that the bilingual speakers in the present study were highly fluent and had acquired both languages in early infancy suggests that the brain activation patterns do not depend on the age of acquisition or the fluency level, as in the case of late, not-so-proficient L2 language learners, but on the functional organization of the bilinguals' brain due to polyglotism and based on brain plasticity.