Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Alessio Avenanti
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (10): 2956–2967.
Published: 01 October 2011
FIGURES
Abstract
View article
PDF
A network of brain regions including the ventral premotor cortex (vPMc) and the posterior parietal cortex (PPc) is consistently recruited during processing of multisensory stimuli within peripersonal space (PPS). However, to date, information on the causal role of these fronto-parietal areas in multisensory PPS representation is lacking. Using low-frequency repetitive TMS (rTMS; 1 Hz), we induced transient virtual lesions to the left vPMc, PPc, and visual cortex (V1, control site) and tested whether rTMS affected audio–tactile interaction in the PPS around the hand. Subjects performed a timed response task to a tactile stimulus on their right (contralateral to rTMS) hand while concurrent task-irrelevant sounds were presented either close to the hand or 1 m far from the hand. When no rTMS was delivered, a sound close to the hand reduced RT-to-tactile targets as compared with when a far sound was presented. This space-dependent, auditory modulation of tactile perception was specific to a hand-centered reference frame. Such a specific form of multisensory interaction near the hand can be taken as a behavioral hallmark of PPS representation. Crucially, virtual lesions to vPMc and PPc, but not to V1, eliminated the speeding effect due to near sounds, showing a disruption of audio–tactile interactions around the hand. These findings indicate that multisensory interaction around the hand depends on the functions of vPMc and PPc, thus pointing to the necessity of this human fronto-parietal network in multisensory representation of PPS.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (6): 1215–1227.
Published: 01 June 2009
Abstract
View article
PDF
Numerous studies suggest that both self-generated and observed actions of others activate overlapping neural networks, implying a shared, agent-neutral representation of self and other. Contrary to the shared representation hypothesis, we recently showed that the human motor system is not neutral with respect to the agent of an observed action [Schütz-Bosbach, S., Mancini, B., Aglioti, S. M., & Haggard, P. Self and other in the human motor system. Current Biology, 16, 1830–1834, 2006]. Observation of actions attributed to another agent facilitated the motor system, whereas observation of identical actions linked to the self did not. Here we investigate whether the absence of motor facilitation for observing one's own actions reflects a specific process of cortical inhibition associated with self-representation. We analyzed the duration of the silent period induced by transcranial magnetic stimulation of the motor cortex in active muscles as an indicator of motor inhibition. We manipulated whether an observed action was attributed to another agent, or to the subjects themselves, using a manipulation of body ownership on the basis of the rubber hand illusion. Observation of actions linked to the self led to longer silent periods than observation of a static hand, but the opposite effect occurred when observing identical actions attributed to another agent. This finding suggests a specific inhibition of the motor system associated with self-representation. Cortical suppression for actions linked to the self might prevent inappropriate perseveration within the motor system.