Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Alexander Maier
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (3): 515–526.
Published: 01 March 2020
FIGURES
| View All (7)
Abstract
View article
PDF
Repetitive performance of single-feature (efficient or pop-out) visual search improves RTs and accuracy. This phenomenon, known as priming of pop-out, has been demonstrated in both humans and macaque monkeys. We investigated the relationship between performance monitoring and priming of pop-out. Neuronal activity in the supplementary eye field (SEF) contributes to performance monitoring and to the generation of performance monitoring signals in the EEG. To determine whether priming depends on performance monitoring, we investigated spiking activity in SEF as well as the concurrent EEG of two monkeys performing a priming of pop-out task. We found that SEF spiking did not modulate with priming. Surprisingly, concurrent EEG did covary with priming. Together, these results suggest that performance monitoring contributes to priming of pop-out. However, this performance monitoring seems not mediated by SEF. This dissociation suggests that EEG indices of performance monitoring arise from multiple, functionally distinct neural generators.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (6): 814–828.
Published: 01 June 2018
FIGURES
| View All (6)
Abstract
View article
PDF
The neural underpinnings of perceptual awareness have been extensively studied using unisensory (e.g., visual alone) stimuli. However, perception is generally multisensory, and it is unclear whether the neural architecture uncovered in these studies directly translates to the multisensory domain. Here, we use EEG to examine brain responses associated with the processing of visual, auditory, and audiovisual stimuli presented near threshold levels of detectability, with the aim of deciphering similarities and differences in the neural signals indexing the transition into perceptual awareness across vision, audition, and combined visual–auditory (multisensory) processing. More specifically, we examine (1) the presence of late evoked potentials (∼>300 msec), (2) the across-trial reproducibility, and (3) the evoked complexity associated with perceived versus nonperceived stimuli. Results reveal that, although perceived stimuli are associated with the presence of late evoked potentials across each of the examined sensory modalities, between-trial variability and EEG complexity differed for unisensory versus multisensory conditions. Whereas across-trial variability and complexity differed for perceived versus nonperceived stimuli in the visual and auditory conditions, this was not the case for the multisensory condition. Taken together, these results suggest that there are fundamental differences in the neural correlates of perceptual awareness for unisensory versus multisensory stimuli. Specifically, the work argues that the presence of late evoked potentials, as opposed to neural reproducibility or complexity, most closely tracks perceptual awareness regardless of the nature of the sensory stimulus. In addition, the current findings suggest a greater similarity between the neural correlates of perceptual awareness of unisensory (visual and auditory) stimuli when compared with multisensory stimuli.