Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Alexander N. Sokolov
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (5): 837–846.
Published: 01 May 2009
FIGURES
| View All (5)
Abstract
View article
PDF
Visual detection of body motion is of immense importance for daily-life activities and social nonverbal interaction. Although neurobiological mechanisms underlying visual processing of human locomotion are being explored extensively by brain imaging, the role of structural brain connectivity is not well understood. Here we investigate cortical evoked neuromagnetic response to point-light body motion in healthy adolescents and in patients with early periventricular lesions, periventricular leukomalacia (PVL), that disrupt brain connectivity. In a simultaneous masking paradigm, participants detected the presence of a point-light walker embedded in a few sets of spatially scrambled dots on the joints of a walker. The visual sensitivity to camouflaged human locomotion was lower in PVL patients. In accord with behavioral data, root-mean-square (RMS) amplitude of neuromagnetic trace in response to human locomotion was lower in PVL patients at latencies of 180–244 msec over the right temporal cortex. In this time window, the visual sensitivity to body motion in controls, but not in PVL patients, was inversely linked to the right temporal activation. At later latencies of 276–340 msec, we found reduction in RMS amplitude in PVL patients for body motion stimuli over the right frontal cortex. The findings indicate that disturbances in brain connectivity with the right temporal cortex, a key node of the social brain, and with the right frontal cortex lead to disintegration of the neural network engaged in visual processing of body motion. We suspect that reduced cortical response to body motion over the right temporal and frontal cortices might underlie deficits in visual social cognition.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (3): 494–504.
Published: 01 March 2008
Abstract
View article
PDF
Perception and understanding of dispositions and intentions of others through their actions are of immense importance for adaptive daily-life behavior and social communication. Here we ask whether, and, if so, how this ability is impaired in adolescents who were born premature and suffer early periventricular damage, periventricular leukomalacia (PVL) that affects brain connectivity. The visual event arrangement (EA) task was administered to PVL patients and two control groups, premature-born and term-born adolescents without brain abnormalities on a magnetic resonance imaging scan. Performance on the EA task was significantly lower in PVL patients as compared with controls. No difference was found between premature-born participants without lesions and term-born controls. Performance on the EA task was inversely related to the volumetric extent of lesions in the parieto-occipital regions of both hemispheres and, in particular, to the right temporal periventricular lesions. Whereas our earlier work reveals that compromised visual processing of biological motion, impairments in visual navigation, and other visual-perceptual disabilities in PVL patients are associated with parieto-occipital lesions, difficulties in the visual EA task solely are specifically linked to the right temporal periventricular lesions. For the first time, we show that the severity of the right temporal PVL can serve as a predictor of the ability for perception and understanding of others' actions. We assume that impairments in this ability in PVL patients are caused by disrupted brain connectivity to the right temporal cortex, a key node of the social brain.