Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Alexandra Basilakos
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (8): 1355–1375.
Published: 01 July 2022
FIGURES
| View All (10)
Abstract
View article
PDF
The neural basis of language has been studied for centuries, yet the networks critically involved in simply identifying or understanding a spoken word remain elusive. Several functional–anatomical models of critical neural substrates of receptive speech have been proposed, including (1) auditory-related regions in the left mid-posterior superior temporal lobe, (2) motor-related regions in the left frontal lobe (in normal and/or noisy conditions), (3) the left anterior superior temporal lobe, or (4) bilateral mid-posterior superior temporal areas. One difficulty in comparing these models is that they often focus on different aspects of the sound-to-meaning pathway and are supported by different types of stimuli and tasks. Two auditory tasks that are typically used in separate studies—syllable discrimination and word comprehension—often yield different conclusions. We assessed syllable discrimination (words and nonwords) and word comprehension (clear speech and with a noise masker) in 158 individuals with focal brain damage: left ( n = 113) or right ( n = 19) hemisphere stroke, left ( n = 18) or right ( n = 8) anterior temporal lobectomy, and 26 neurologically intact controls. Discrimination and comprehension tasks are doubly dissociable both behaviorally and neurologically. In support of a bilateral model, clear speech comprehension was near ceiling in 95% of left stroke cases and right temporal damage impaired syllable discrimination. Lesion-symptom mapping analyses for the syllable discrimination and noisy word comprehension tasks each implicated most of the left superior temporal gyrus. Comprehension but not discrimination tasks also implicated the left posterior middle temporal gyrus, whereas discrimination but not comprehension tasks also implicated more dorsal sensorimotor regions in posterior perisylvian cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (2): 256–271.
Published: 01 February 2020
FIGURES
Abstract
View article
PDF
Left-hemisphere brain damage commonly affects patients' abilities to produce and comprehend syntactic structures, a condition typically referred to as “agrammatism.” The neural correlates of agrammatism remain disputed in the literature, and distributed areas have been implicated as important predictors of performance, for example, Broca's area, anterior temporal areas, and temporo-parietal areas. We examined the association between damage to specific language-related ROIs and impaired syntactic processing in acute aphasia. We hypothesized that damage to the posterior middle temporal gyrus, and not Broca's area, would predict syntactic processing abilities. One hundred four individuals with acute aphasia (<20 days poststroke) were included in the study. Structural MRI scans were obtained, and all participants completed a 45-item sentence–picture matching task. We performed an ROI-based stepwise regression analyses to examine the relation between cortical brain damage and impaired comprehension of canonical and noncanonical sentences. Damage to the posterior middle temporal gyrus was the strongest predictor for overall task performance and performance on noncanonical sentences. Damage to the angular gyrus was the strongest predictor for performance on canonical sentences, and damage to the posterior superior temporal gyrus predicted noncanonical scores when performance on canonical sentences was included as a cofactor. Overall, our models showed that damage to temporo-parietal and posterior temporal areas was associated with impaired syntactic comprehension. Our results indicate that the temporo-parietal area is crucially implicated in complex syntactic processing, whereas the role of Broca's area may be complementary.