Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Alexandre Zenon
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (3): 402–417.
Published: 01 March 2016
FIGURES
| View All (7)
Abstract
View article
PDF
Because Broca's area is known to be involved in many cognitive functions, including language, music, and action processing, several attempts have been made to propose a unifying theory of its role that emphasizes a possible contribution to syntactic processing. Recently, we have postulated that Broca's area might be involved in higher-order chunk processing during implicit learning of a motor sequence. Chunking is an information-processing mechanism that consists of grouping consecutive items in a sequence and is likely to be involved in all of the aforementioned cognitive processes. Demonstrating a contribution of Broca's area to chunking during the learning of a nonmotor sequence that does not involve language could shed new light on its function. To address this issue, we used offline MRI-guided TMS in healthy volunteers to disrupt the activity of either the posterior part of Broca's area (left Brodmann's area [BA] 44) or a control site just before participants learned a perceptual sequence structured in distinct hierarchical levels. We found that disruption of the left BA 44 increased the processing time of stimuli representing the boundaries of higher-order chunks and modified the chunking strategy. The current results highlight the possible role of the left BA 44 in building up effector-independent representations of higher-order events in structured sequences. This might clarify the contribution of Broca's area in processing hierarchical structures, a key mechanism in many cognitive functions, such as language and composite actions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (5): 918–930.
Published: 01 May 2010
FIGURES
| View All (6)
Abstract
View article
PDF
Some objects in the visual field are more likely to attract attention because they are either intrinsically eye catching or relevant in the context of a particular task. These two factors, known as stimulus-driven and goal-directed factors, respectively, are thought to be integrated into a unique salience map, possibly located in the frontal or the parietal cortex. However, the distinct contribution of these two regions to salience representation is difficult to establish experimentally and remains debated. In an attempt to address this issue, we designed several dual tasks composed of a letter reporting task and a visual search task, allowing us to quantify the salience of each visual item by measuring its probability to be selected by attention. In Experiment 1, the salience of the visual search items depended on a combination of conspicuity and relevance factors, whereas in Experiment 2, stimulus-driven and goal-directed factors were tested separately. Then, we used transcranial magnetic stimulation to interfere transiently with the function of the right angular gyrus (ANG) or right FEFs in healthy subjects performing these dual tasks. We found that interfering with the ANG and the FEF function specifically altered the influence of salience on the letter report rate without affecting the overall letter reporting rate, suggesting that these areas are involved in salience representation. In particular, the present study suggests that ANG is involved in goal-directed salience representation, whereas FEF would rather house a global salience map integrating both goal-directed and stimulus-driven factors.