Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Amir Homayoun Javadi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (6): 1142–1152.
Published: 01 June 2020
FIGURES
| View All (7)
Abstract
View article
PDF
Sensory perception can be modulated by the phase of neural oscillations, especially in the theta and alpha ranges. Oscillatory activity in the visual cortex can be entrained by transcranial alternating current stimulation (tACS) as well as periodic visual stimulation (i.e., flicker). Combined tACS and visual flicker stimulation modulates BOLD response, and concurrent 4-Hz auditory click train, and tACS modulate auditory perception in a phase-dependent way. In this study, we investigated whether phase synchrony between concurrent tACS and periodic visual stimulation (i.e., flicker) can modulate performance on a visual matching task. Participants completed a visual matching task on a flickering visual stimulus while receiving either in-phase (0°) or asynchronous (180°, 90°, or 270°) tACS at alpha or theta frequency. Stimulation was applied over either occipital cortex or dorsolateral pFC. Visual performance was significantly better during theta frequency tACS over the visual cortex when it was in-phase (0°) with visual stimulus flicker, compared with antiphase (180°). This effect did not appear with alpha frequency flicker or with dorsolateral pFC stimulation. Furthermore, a control sham group showed no effect. There were no significant performance differences among the asynchronous (180°, 90°, and 270°) phase conditions. Extending previous studies on visual and auditory perception, our results support a crucial role of oscillatory phase in sensory perception and demonstrate a behaviorally relevant combination of visual flicker and tACS. The spatial and frequency specificity of our results have implications for research on the functional organization of perception.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (8): 1227–1247.
Published: 01 August 2019
FIGURES
| View All (6)
Abstract
View article
PDF
Central to the concept of the “cognitive map” is that it confers behavioral flexibility, allowing animals to take efficient detours, exploit shortcuts, and avoid alluring, but unhelpful, paths. The neural underpinnings of such naturalistic and flexible behavior remain unclear. In two neuroimaging experiments, we tested human participants on their ability to navigate to a set of goal locations in a virtual desert island riven by lava, which occasionally spread to block selected paths (necessitating detours) or receded to open new paths (affording real shortcuts or false shortcuts to be avoided). Detours activated a network of frontal regions compared with shortcuts. Activity in the right dorsolateral PFC specifically increased when participants encountered tempting false shortcuts that led along suboptimal paths that needed to be differentiated from real shortcuts. We also report modulation in event-related fields and theta power in these situations, providing insight to the temporal evolution of response to encountering detours and shortcuts. These results help inform current models as to how the brain supports navigation and planning in dynamic environments.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (11): 2174–2185.
Published: 01 November 2015
FIGURES
| View All (4)
Abstract
View article
PDF
One of the multiple interacting systems involved in the selection and execution of voluntary actions is the primary motor cortex (PMC). We aimed to investigate whether the transcranial direct current stimulation (tDCS) of this area can modulate hand choice. A perceptual decision-making task was administered. Participants were asked to classify rectangles with different height-to-width ratios into horizontal and vertical rectangles using their right and left index fingers while their PMC was stimulated either bilaterally or unilaterally. Two experiments were conducted with different stimulation conditions: the first experiment ( n = 12) had only one stimulation condition (bilateral stimulation), and the second experiment ( n = 45) had three stimulation conditions (bilateral, anodal unilateral, and cathodal unilateral stimulations). The second experiment was designed to confirm the results of the first experiment and to further investigate the effects of anodal and cathodal stimulations alone in the observed effects. Each participant took part in two sessions. The laterality of stimulation was reversed over the two sessions. Our results showed that anodal stimulation of the PMC biases participants' responses toward using the contralateral hand whereas cathodal stimulation biases responses toward the ipsilateral hand. Brain stimulation also modulated the RT of the left hand in all stimulation conditions: Responses were faster when the response bias was in favor of the left hand and slower when the response bias was against it. We propose two possible explanations for these findings: the perceptual bias account (bottom–up effects of stimulation on perception) and the motor-choice bias account (top–down modulation of the decision-making system by facilitation of response in one hand over the other). We conclude that motor responses and the choice of hand can be modulated using tDCS.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (12): 2670–2681.
Published: 01 December 2014
FIGURES
| View All (7)
Abstract
View article
PDF
It has been suggested that adolescents process rewards differently from adults, both cognitively and affectively. In an fMRI study we recorded brain BOLD activity of adolescents (age range = 14–15 years) and adults (age range = 20–39 years) to investigate the developmental changes in reward processing and decision-making. In a probabilistic reversal learning task, adolescents and adults adapted to changes in reward contingencies. We used a reinforcement learning model with an adaptive learning rate for each trial to model the adolescents' and adults' behavior. Results showed that adolescents possessed a shallower slope in the sigmoid curve governing the relation between expected value (the value of the expected feedback, +1 and −1 representing rewarding and punishing feedback, respectively) and probability of stay (selecting the same option as in the previous trial). Trial-by-trial change in expected values after being correct or wrong was significantly different between adolescents and adults. These values were closer to certainty for adults. Additionally, absolute value of model-derived prediction error for adolescents was significantly higher after a correct response but a punishing feedback. At the neural level, BOLD correlates of learning rate, expected value, and prediction error did not significantly differ between adolescents and adults. Nor did we see group differences in the prediction error-related BOLD signal for different trial types. Our results indicate that adults seem to behaviorally integrate punishing feedback better than adolescents in their estimation of the current state of the contingencies. On the basis of these results, we argue that adolescents made decisions with less certainty when compared with adults and speculate that adolescents acquired a less accurate knowledge of their current state, that is, of being correct or wrong.