Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Amir Raz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (7): 1292–1301.
Published: 01 July 2017
FIGURES
| View All (4)
Abstract
View article
PDF
Cognitive neuroscientists rarely consider the influence that body position exerts on brain activity; yet, postural variation holds important implications for the acquisition and interpretation of neuroimaging data. Whereas participants in most behavioral and EEG experiments sit upright, many prominent brain imaging techniques (e.g., fMRI) require participants to lie supine. Here we demonstrate that physical comportment profoundly alters baseline brain activity as measured by magnetoencephalography (MEG)—an imaging modality that permits multipostural acquisition. We collected resting-state MEG data from 12 healthy participants in three postures (lying supine, reclining at 45°, and sitting upright). Source-modeling analysis revealed a broadly distributed influence of posture on resting brain function. Sitting upright versus lying supine was associated with greater high-frequency (i.e., beta and gamma) activity in widespread parieto-occipital cortex. Moreover, sitting upright and reclining postures correlated with dampened activity in prefrontal regions across a range of bandwidths (i.e., from alpha to low gamma). The observed effects were large, with a mean Cohen's d of 0.95 ( SD = 0.23). In addition to neural activity, physiological parameters such as muscle tension and eye blinks may have contributed to these posture-dependent changes in brain signal. Regardless of the underlying mechanisms, however, the present results have important implications for the acquisition and interpretation of multimodal imaging data (e.g., studies combining fMRI or PET with EEG or MEG). More broadly, our findings indicate that generalizing results—from supine neuroimaging measurements to erect positions typical of ecological human behavior—would call for considering the influence that posture wields on brain dynamics.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (3): 340–347.
Published: 01 April 2002
Abstract
View article
PDF
In recent years, three attentional networks have been defined in anatomical and functional terms. These functions involve alerting, orienting, and executive attention. Reaction time measures can be used to quantify the processing efficiency within each of these three networks. The Attention Network Test (ANT) is designed to evaluate alerting, orienting, and executive attention within a single 30-min testing session that can be easily performed by children, patients, and monkeys. A study with 40 normal adult subjects indicates that the ANT produces reliable single subject estimates of alerting, orienting, and executive function, and further suggests that the efficiencies of these three networks are uncorrelated. There are, however, some interactions in which alerting and orienting can modulate the degree of interference from flankers. This procedure may prove to be convenient and useful in evaluating attentional abnormalities associated with cases of brain injury, stroke, schizophrenia, and attention-deficit disorder. The ANT may also serve as an activation task for neuroimaging studies and as a phenotype for the study of the influence of genes on attentional networks.