Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Anastasia Kiyonaga
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2025) 37 (6): 1035–1052.
Published: 01 June 2025
Abstract
View articletitled, Beyond Routine Maintenance: Current Trends in Working Memory Research
View
PDF
for article titled, Beyond Routine Maintenance: Current Trends in Working Memory Research
Working memory (WM) is an evolving concept. Our understanding of the neural functions that support WM develops iteratively alongside the approaches used to study it, and both can be profoundly shaped by available tools and prevailing theoretical paradigms. Here, the organizers of the 2024 Working Memory Symposium—inspired by this year's meeting—highlight current trends and looming questions in WM research. This review is organized into sections describing (1) ongoing efforts to characterize WM function across sensory modalities, (2) the growing appreciation that WM representations are malleable to context and future actions, (3) the enduring problem of how multiple WM items and features are structured and integrated, and (4) new insights about whether WM shares function with other cognitive processes that have conventionally been considered distinct. This review aims to chronicle where the field is headed and calls attention to issues that are paramount for future research.
Journal Articles
Hemisphere-specific Parietal Contributions to the Interplay between Working Memory and Attention
UnavailablePublisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (8): 1428–1441.
Published: 01 July 2021
FIGURES
Abstract
View articletitled, Hemisphere-specific Parietal Contributions to the Interplay between Working Memory and Attention
View
PDF
for article titled, Hemisphere-specific Parietal Contributions to the Interplay between Working Memory and Attention
To achieve our moment-to-moment goals, we must often keep information temporarily in mind. Yet, this working memory (WM) may compete with demands for our attention in the environment. Attentional and WM functions are thought to operate by similar underlying principles, and they often engage overlapping fronto-parietal brain regions. In a recent fMRI study, bilateral parietal cortex BOLD activity displayed an interaction between WM and visual attention dual-task demands. However, prior studies also suggest that left and right parietal cortices make unique contributions to WM and attentional functions. Moreover, behavioral performance often shows no interaction between concurrent WM and attentional demands. Thus, the scope of reciprocity between WM and attentional functions, as well as the specific contribution that parietal cortex makes to these functions, remain unresolved. Here, we took a causal approach, targeting brain regions that are implicated in shared processing between WM and visual attention, to better characterize how those regions contribute to behavior. We first examined whether behavioral indices of WM and visual search differentially correlate with left and right parietal dual-task BOLD responses. Then, we delivered TMS over fMRI-guided left and right parietal sites during dual-task WM–visual search performance. Only right-parietal TMS influenced visual search behavior, but the stimulation either helped or harmed search depending on the current WM load. Therefore, whereas the left and right parietal contributions were distinct here, attentional and WM functions were codependent. Right parietal cortex seems to hold a privileged role in visual search behavior, consistent with prior findings, but the current results reveal that behavior may be sensitive to the interaction between visual search and WM load only when normal parietal activity is perturbed. The parietal response to heightened WM and attentional demands may therefore serve to protect against dual-task interference.
Journal Articles
Neural Representation of Working Memory Content Is Modulated by Visual Attentional Demand
UnavailablePublisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (12): 2011–2024.
Published: 01 December 2017
FIGURES
| View All (4)
Abstract
View articletitled, Neural Representation of Working Memory Content Is Modulated by Visual Attentional Demand
View
PDF
for article titled, Neural Representation of Working Memory Content Is Modulated by Visual Attentional Demand
Recent theories assert that visual working memory (WM) relies on the same attentional resources and sensory substrates as visual attention to external stimuli. Behavioral studies have observed competitive tradeoffs between internal (i.e., WM) and external (i.e., visual) attentional demands, and neuroimaging studies have revealed representations of WM content as distributed patterns of activity within the same cortical regions engaged by perception of that content. Although a key function of WM is to protect memoranda from competing input, it remains unknown how neural representations of WM content are impacted by incoming sensory stimuli and concurrent attentional demands. Here, we investigated how neural evidence for WM information is affected when attention is occupied by visual search—at varying levels of difficulty—during the delay interval of a WM match-to-sample task. Behavioral and fMRI analyses suggested that WM maintenance was impacted by the difficulty of a concurrent visual task. Critically, multivariate classification analyses of category-specific ventral visual areas revealed a reduction in decodable WM-related information when attention was diverted to a visual search task, especially when the search was more difficult. This study suggests that the amount of available attention during WM maintenance influences the detection of sensory WM representations.