Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
André Mouraux
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
EEG Frequency Tagging to Dissociate the Cortical Responses to Nociceptive and Nonnociceptive Stimuli
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (10): 2262–2274.
Published: 01 October 2014
FIGURES
| View All (5)
Abstract
View article
PDF
Whether the cortical processing of nociceptive input relies on the activity of nociceptive-specific neurons or whether it relies on the activity of neurons also involved in processing nonnociceptive sensory input remains a matter of debate. Here, we combined EEG “frequency tagging” of steady-state evoked potentials (SS-EPs) with an intermodal selective attention paradigm to test whether the cortical processing of nociceptive input relies on nociceptive-specific neuronal populations that can be selectively modulated by top–down attention. Trains of nociceptive and vibrotactile stimuli (Experiment 1) and trains of nociceptive and visual stimuli (Experiment 2) were applied concomitantly to the same hand, thus eliciting nociceptive, vibrotactile, and visual SS-EPs. In each experiment, a target detection task was used to focus attention toward one of the two concurrent streams of sensory input. We found that selectively attending to nociceptive or vibrotactile somatosensory input indistinctly enhances the magnitude of nociceptive and vibrotactile SS-EPs, whereas selectively attending to nociceptive or visual input independently enhances the magnitude of the SS-EP elicited by the attended sensory input. This differential effect indicates that the processing of nociceptive input involves neuronal populations also involved in the processing of touch, but distinct from the neuronal populations involved in vision.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (10): 2822–2837.
Published: 01 October 2011
FIGURES
| View All (6)
Abstract
View article
PDF
The repetition of nociceptive stimuli of identical modality, intensity, and location at short and constant interstimulus intervals (ISIs) determines a strong habituation of the corresponding EEG responses, without affecting the subjective perception of pain. To understand what determines this response habituation, we (i) examined the effect of introducing a change in the modality of the repeated stimulus, and (ii) dissected the relative contribution of bottom–up, stimulus-driven changes in modality and top–down, cognitive expectations of such a change, on both laser-evoked and auditory-evoked EEG responses. Multichannel EEG was recorded while participants received trains of three stimuli (S1–S2–S3, a triplet) delivered to the hand dorsum at 1-sec ISI. S3 belonged either to the same modality as S1 and S2 or to the other modality. In addition, participants were either explicitly informed or not informed of the modality of S3. We found that introducing a change in stimulus modality produced a significant dishabituation of the laser-evoked N1, N2, and P2 waves; the auditory N1 and P2 waves; and the laser- and auditory-induced event-related synchronization and desynchronization. In contrast, the lack of explicit knowledge of a possible change in the sensory modality of the stimulus (i.e., uncertainty) only increased the ascending portion of the laser-evoked and auditory-evoked P2 wave. Altogether, these results indicate that bottom–up novelty resulting from the change of stimulus modality, and not top–down cognitive expectations, plays a major role in determining the habituation of these brain responses.