Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Andrew D. Sheldon
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (4): 739–755.
Published: 01 April 2021
FIGURES
| View All (7)
Abstract
View article
PDF
What mechanisms underlie the prioritization of neural representations of visually perceived information to guide behavior? We assessed the dynamics whereby attention biases competition for representation of visual stimuli by enhancing representations of relevant information and suppressing the irrelevant. Multivariate pattern analysis (MVPA) classifiers were trained to discriminate patterns of fMRI activity associated with each of three stimuli, within several predefined ROIs. Participants performed a change-detection task wherein two of three presented items flashed at 1 Hz, one to each side of central fixation. Both flashing stimuli would unpredictably change state, but participants covertly counted the number of changes only for the cued item. In the ventral occipito-temporal ROI, MVPA evidence (a proxy for representational fidelity) was dynamically enhanced for attended stimuli and suppressed for unattended stimuli, consistent with a mechanism of biased competition between stimulus representations. Frontal and parietal ROIs displayed a qualitatively distinct, more “source-like” profile, wherein MVPA evidence for only the attended stimulus could be observed above baseline levels. To assess how attentional modulation of ventral occipito-temporal representations might relate to signals originating in the frontal and/or parietal ROIs, we analyzed informational connectivity (IC), which indexes time-varying covariation between regional levels of MVPA evidence. Parietal-posterior IC was elevated during the task, but did not differ for cued versus uncued items. Frontal-posterior IC, in contrast, was sensitive to an item's priority status. Thus, although regions of frontal and parietal cortex act as sources of top–down attentional control, their precise functions likely differ.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (5): 917–944.
Published: 01 May 2020
FIGURES
| View All (9)
Abstract
View article
PDF
Although humans can hold multiple items in mind simultaneously, the contents of working memory (WM) can be selectively prioritized to guide future behavior. We explored whether the “same-object” benefits in visual processing may also be observed in visual WM. fMRI data were collected while participants performed a multistep serial retrocuing task in which they first viewed two 2-D objects (coherently moving colored dots). During retention, an initial relevance cue then indicated whether only the first or only the second object (“object-relevant”), or only the color of both objects or only their direction of motion would be relevant for the remainder of the trial (“feature-relevant”). On “object-relevant” trials, the ensuing priority cues selected either one of the features (“color” or “direction”) bound to the relevance-cued object, whereas on “feature-relevant” trials, the priority cues selected one of the two relevance-cued features. Using multivariate inverted encoding models, we found a same-object benefit on object-relevant trials in occipitotemporal regions: On feature-relevant trials, the first priority cue triggered a strengthening of the neural representation of the cued feature and a concomitant weakening to baseline of the uncued feature, whereas on object-relevant trials, the cued item remained active but did not increase in strength and the uncued item weakened but remained significantly elevated throughout the delay period. Although the stimulus-specific representation in frontoparietal regions was weak and uneven, these regions closely tracked the higher order information of which stimulus category was relevant for behavior throughout the trial, suggesting an important role in controlling the prioritization of information in visual WM.