Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Andrew E. Welchman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (1): 100–110.
Published: 01 January 2020
FIGURES
| View All (6)
Abstract
View article
PDF
Throughout the brain, information from individual sources converges onto higher order neurons. For example, information from the two eyes first converges in binocular neurons in area V1. Some neurons are tuned to similarities between sources of information, which makes intuitive sense in a system striving to match multiple sensory signals to a single external cause—that is, establish causal inference. However, there are also neurons that are tuned to dissimilar information. In particular, some binocular neurons respond maximally to a dark feature in one eye and a light feature in the other. Despite compelling neurophysiological and behavioral evidence supporting the existence of these neurons [Katyal, S., Vergeer, M., He, S., He, B., & Engel, S. A. Conflict-sensitive neurons gate interocular suppression in human visual cortex. Scientific Reports , 8 , 1239, 2018; Kingdom, F. A. A., Jennings, B. J., & Georgeson, M. A. Adaptation to interocular difference. Journal of Vision , 18 , 9, 2018; Janssen, P., Vogels, R., Liu, Y., & Orban, G. A. At least at the level of inferior temporal cortex, the stereo correspondence problem is solved. Neuron , 37 , 693–701, 2003; Tsao, D. Y., Conway, B. R., & Livingstone, M. S. Receptive fields of disparity-tuned simple cells in macaque V1. Neuron , 38 , 103–114, 2003; Cumming, B. G., & Parker, A. J. Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature , 389 , 280–283, 1997], their function has remained opaque. To determine how neural mechanisms tuned to dissimilarities support perception, here we use electroencephalography to measure human observers' steady-state visually evoked potentials in response to change in depth after prolonged viewing of anticorrelated and correlated random-dot stereograms (RDS). We find that adaptation to anticorrelated RDS results in larger steady-state visually evoked potentials, whereas adaptation to correlated RDS has no effect. These results are consistent with recent theoretical work suggesting “what not” neurons play a suppressive role in supporting stereopsis [Goncalves, N. R., & Welchman, A. E. “What not” detectors help the brain see in depth. Current Biology , 27 , 1403–1412, 2017]; that is, selective adaptation of neurons tuned to binocular mismatches reduces suppression resulting in increased neural excitability.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (9): 1527–1541.
Published: 01 September 2013
FIGURES
| View All (6)
Abstract
View article
PDF
The visual system's flexibility in estimating depth is remarkable: We readily perceive 3-D structure under diverse conditions from the seemingly random dots of a “magic eye” stereogram to the aesthetically beautiful, but obviously flat, canvasses of the Old Masters. Yet, 3-D perception is often enhanced when different cues specify the same depth. This perceptual process is understood as Bayesian inference that improves sensory estimates. Despite considerable behavioral support for this theory, insights into the cortical circuits involved are limited. Moreover, extant work tested quantitatively similar cues, reducing some of the challenges associated with integrating computationally and qualitatively different signals. Here we address this challenge by measuring fMRI responses to depth structures defined by shading, binocular disparity, and their combination. We quantified information about depth configurations (convex “bumps” vs. concave “dimples”) in different visual cortical areas using pattern classification analysis. We found that fMRI responses in dorsal visual area V3B/KO were more discriminable when disparity and shading concurrently signaled depth, in line with the predictions of cue integration. Importantly, by relating fMRI and psychophysical tests of integration, we observed a close association between depth judgments and activity in this area. Finally, using a cross-cue transfer test, we found that fMRI responses evoked by one cue afford classification of responses evoked by the other. This reveals a generalized depth representation in dorsal visual cortex that combines qualitatively different information in line with 3-D perception.