Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Andrew J. Butler
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (2): 203–218.
Published: 01 February 2013
FIGURES
| View All (7)
Abstract
View article
PDF
Our experience with the world commonly involves physical interaction with objects enabling us to learn associations between multisensory information perceived during an event and our actions that create an event. The interplay among active interactions during learning and multisensory integration of object properties is not well understood. To better understand how action might enhance multisensory associative recognition, we investigated the interplay among motor and perceptual systems after active learning. Fifteen participants were included in an fMRI study during which they learned visuo-auditory-motor associations between novel objects and the sounds they produce, either through self-generated actions on the objects (active learning) or by observing an experimenter produce the actions (passive learning). Immediately after learning, behavioral and BOLD fMRI measures were collected while perceiving the objects used during unisensory and multisensory training in associative perception and recognition tasks. Active learning was faster and led to more accurate recognition of audiovisual associations than passive learning. Functional ROI analyses showed that in motor, somatosensory, and cerebellar regions there was greater activation during both the perception and recognition of actively learned associations. Finally, functional connectivity between visual- and motor-related processing regions was enhanced during the presentation of actively learned audiovisual associations. Overall, the results of the current study clarify and extend our own previous work [Butler, A. J., James, T. W., & Harman James, K. Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations. Journal of Cognitive Neuroscience, 23, 3515–3528, 2011] by providing several novel findings and highlighting the task-based nature of motor reactivation and retrieval after active learning.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (11): 3515–3528.
Published: 01 November 2011
FIGURES
| View All (8)
Abstract
View article
PDF
Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent perception and recognition of associations among multiple senses has not been investigated. Twenty participants were included in an fMRI study that explored the impact of active motor learning on subsequent processing of unisensory and multisensory stimuli. Participants were exposed to visuo-motor associations between novel objects and novel sounds either through self-generated actions on the objects or by observing an experimenter produce the actions. Immediately after exposure, accuracy, RT, and BOLD fMRI measures were collected with unisensory and multisensory stimuli in associative perception and recognition tasks. Response times during audiovisual associative and unisensory recognition were enhanced by active learning, as was accuracy during audiovisual associative recognition. The difference in motor cortex activation between old and new associations was greater for the active than the passive group. Furthermore, functional connectivity between visual and motor cortices was stronger after active learning than passive learning. Active learning also led to greater activation of the fusiform gyrus during subsequent unisensory visual perception. Finally, brain regions implicated in audiovisual integration (e.g., STS) showed greater multisensory gain after active learning than after passive learning. Overall, the results show that active motor learning modulates the processing of multisensory associations.