Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Andrew L. Alexander
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (2): 237–248.
Published: 01 February 2007
Abstract
View article
PDF
Using functional magnetic resonance imaging, we examined whether individual differences in amygdala activation in response to negative relative to neutral information are related to differences in the speed with which such information is evaluated, the extent to which such differences are associated with medial prefrontal cortex function, and their relationship with measures of trait anxiety and psychological well-being (PWB). Results indicated that faster judgments of negative relative to neutral information were associated with increased left and right amygdala activation. In the prefrontal cortex, faster judgment time was associated with relative decreased activation in a cluster in the ventral anterior cingulate cortex (ACC, BA 24). Furthermore, people who were slower to evaluate negative versus neutral information reported higher PWB. Importantly, higher PWB was strongly associated with increased activation in the ventral ACC for negative relative to neutral information. Individual differences in trait anxiety did not predict variation in judgment time or in amygdala or ventral ACC activity. These findings suggest that people high in PWB effectively recruit the ventral ACC when confronted with potentially aversive stimuli, manifest reduced activity in subcortical regions such as the amygdala, and appraise such information as less salient as reflected in slower evaluative speed.
Journal Articles
Sterling C. Johnson, Taylor W. Schmitz, Tisha N. Kawahara-Baccus, Howard A. Rowley, Andrew L. Alexander ...
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (12): 1897–1906.
Published: 01 December 2005
Abstract
View article
PDF
The anterior medial prefrontal (AMPFC) and retrosplenial (RSC) cortices are active during self-referential decision-making tasks such as when participants appraise traits and abilities, or current affect. Other appraisal tasks requiring an evaluative decision or mental representation, such as theory of mind and perspective-taking tasks, also involve these regions. In many instances, these types of decisions involve a subjective opinion or preference, but also a degree of ambiguity in the decision, rather than a strictly veridical response. However, this ambiguity is generally not controlled for in studies that examine self-referential decision-making. In this functional magnetic resonance imaging experiment with 17 healthy adults, we examined neural processes associated with subjective decision-making with and without an overt self-referential component. The task required subjective decisions about colors-regarding self-preference (internal subjective decision) or color similarity (external subjective decision) under conditions where there was no objectively correct response. Results indicated greater activation in the AMPFC, RSC, and caudate nucleus during internal subjective decision-making. The findings suggest that self-referential processing, rather than subjective judgments among ambiguous response alternatives, accounted for the AMPFC and RSC response.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (10): 1730–1745.
Published: 01 December 2004
Abstract
View article
PDF
We recently demonstrated a functional relationship between fMRI responses within the amygdala and the medial prefrontal cortex based upon whether subjects interpreted surprised facial expressions positively or negatively. In the present fMRI study, we sought to assess amygdala–medial prefrontal cortex responsivity when the interpretations of surprised faces were determined by contextual experimental stimuli, rather than subjective judgment. Subjects passively viewed individual presentations of surprised faces preceded by either a negatively or positively valenced contextual sentence (e.g., She just found $500 vs. She just lost $500). Negative and positive sentences were carefully matched in terms of length, situations described, and arousal level. Negatively cued surprised faces produced greater ventral amygdala activation compared to positively cued surprised faces. Responses to negative versus positive sentences were greater within the ventrolateral prefrontal cortex, whereas responses to positive versus negative sentences were greater within the ventromedial prefrontal cortex. The present study demonstrates that amygdala response to surprised facial expressions can be modulated by negatively versus positively valenced verbal contextual information. Connectivity analyses identified candidate cortical–subcortical systems subserving this modulation.