Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Andrew S. Kayser
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (1): 155–166.
Published: 01 January 2024
FIGURES
Abstract
View article
PDF
There is increasing evidence that the left lateral frontal cortex is hierarchically organized such that higher-order regions have an asymmetric top–down influence over lower order regions. However, questions remain about the underlying neuroarchitecture of this hierarchical control organization. Within the frontal cortex, dopamine plays an important role in cognitive control functions, and we hypothesized that dopamine may preferentially influence top–down connections within the lateral frontal hierarchy. Using a randomized, double-blind, within-subject design, we analyzed resting-state fMRI data of 66 healthy young participants who were scanned once each after administration of bromocriptine (a dopamine agonist with preferential affinity for D2 receptor), tolcapone (an inhibitor of catechol-O-methyltransferase), and placebo, to determine whether dopaminergic stimulation modulated effective functional connectivity between hierarchically organized frontal regions in the left hemisphere. We found that dopaminergic drugs modulated connections from the caudal middle frontal gyrus and the inferior frontal sulcus to both rostral and caudal frontal areas. In dorsal frontal regions, effectivity connectivity strength was increased, whereas in ventral frontal regions, effective connectivity strength was decreased. These findings suggest that connections within frontal cortex are differentially modulated by dopamine, which may bias the influence that frontal regions exert over each other.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (9): 1753–1765.
Published: 01 August 2021
FIGURES
| View All (4)
Abstract
View article
PDF
The contents of working memory must be maintained in the face of distraction, but updated when appropriate. To manage these competing demands of stability and flexibility, maintained representations in working memory are complemented by distinct gating mechanisms that selectively transmit information into and out of memory stores. The operations of such dopamine-dependent gating systems in the midbrain and striatum and their complementary dopamine-dependent memory maintenance operations in the cortex may therefore be dissociable. If true, selective increases in cortical dopamine tone should preferentially enhance maintenance over gating mechanisms. To test this hypothesis, tolcapone, a catechol- O -methyltransferase inhibitor that preferentially increases cortical dopamine tone, was administered in a randomized, double-blind, placebo-controlled, within-subject fashion to 49 participants who completed a hierarchical working memory task that varied maintenance and gating demands. Tolcapone improved performance in a condition with higher maintenance requirements and reduced gating demands, reflected in a reduction in the slope of RTs across the distribution. Resting-state fMRI data demonstrated that the degree to which tolcapone improved performance in individual participants correlated with increased connectivity between a region important for stimulus response mappings (left dorsal premotor cortex) and cortical areas implicated in visual working memory, including the intraparietal sulcus and fusiform gyrus. Together, these results provide evidence that augmenting cortical dopamine tone preferentially improves working memory maintenance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (8): 1166–1177.
Published: 01 August 2016
FIGURES
| View All (5)
Abstract
View article
PDF
When we respond to a stimulus, our decisions are based not only on external stimuli but also on our ongoing performance. If the response deviates from our goals, monitoring and decision-making brain areas interact so that future behavior may change. By taking advantage of natural variation in error salience, as measured by the RT taken to correct an error (RT EC ), here we argue that an evidence accumulation framework provides a potential underlying mechanism for this variable process of error identification and correction, as evidenced by covariation of frontal monitoring and parietal decision-making processes. We study two early EEG signals linked to monitoring within medial PFC—the error-related negativity (ERN) and frontocentral theta activity—and a third EEG signal, the error positivity (Pe), that is thought to share the same parietal substrates as a signal (the P3b) proposed to reflect evidence accumulation. As predicted, our data show that on slow RT EC trials, frontal monitoring resources are less strongly employed, and the latency of the Pe is longer. Critically, the speed of the RT EC also covaries with the magnitude of subsequent neural (intertrial alpha power) and behavioral (post-error slowing) adjustments following the correction. These results are synthesized to describe a timing diagram for adaptive decision-making after errors and support a potential evidence accumulation mechanism in which error signaling is followed by rapid behavioral adjustments.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (2): 199–209.
Published: 01 February 2016
FIGURES
| View All (5)
Abstract
View article
PDF
The onset of adolescence is associated with an increase in the behavioral tendency to explore and seek novel experiences. However, this exploration has rarely been quantified, and its neural correlates during this period remain unclear. Previously, activity within specific regions of the rostrolateral PFC (rlPFC) in adults has been shown to correlate with the tendency for exploration. Here we investigate a recently developed task to assess individual differences in strategic exploration, defined as the degree to which the relative uncertainty of rewards directs responding toward less well-evaluated choices, in 62 girls aged 11–13 years from whom resting state fMRI data were obtained in a separate session. Behaviorally, this task divided our participants into groups of explorers ( n = 41) and nonexplorers ( n = 21). When seed ROIs within the rlPFC were used to interrogate resting state fMRI data, we identified a lateralized connection between the rlPFC and posterior putamen/insula whose strength differentiated explorers from nonexplorers. On the basis of Granger causality analyses, the preponderant direction of influence may proceed from posterior to anterior. Together, these data provide initial evidence concerning the neural basis of exploratory tendencies at the onset of adolescence.