Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Andrey R. Nikolaev
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (5): 853–871.
Published: 01 April 2021
FIGURES
| View All (7)
Abstract
View article
PDF
Gestalt psychology has traditionally ignored the role of attention in perception, leading to the view that autonomous processes create perceptual configurations that are then attended. More recent research, however, has shown that spatial attention influences a form of Gestalt perception: the coherence of random-dot kinematograms (RDKs). Using ERPs, we investigated whether temporal expectations exert analogous attentional effects on the perception of coherence level in RDKs. Participants were presented fixed-length sequences of RDKs and reported the coherence level of a target RDK. The target was indicated immediately after its appearance by a postcue. Target expectancy increased as the sequence progressed until target presentation; afterward, remaining RDKs were perceived without target expectancy. Expectancy influenced the amplitudes of ERP components P1 and N2. Crucially, expectancy interacted with coherence level at N2, but not at P1. Specifically, P1 amplitudes decreased linearly as a function of RDK coherence irrespective of expectancy, whereas N2 exhibited a quadratic dependence on coherence: larger amplitudes for RDKs with intermediate coherence levels, and only when they were expected. These results suggest that expectancy at early processing stages is an unspecific, general readiness for perception. At later stages, expectancy becomes stimulus specific and nonlinearly related to Gestalt coherence.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (12): 1969–1979.
Published: 01 December 2005
Abstract
View article
PDF
The attentional blink (AB) phenomenon occurs when perceivers must report two targets embedded in a sequence of distracters; if the first target precedes the second by 200-600 msec, the second one is often missed. We investigated AB by measuring dynamic cross-lag phase synchronization for 565 electrode pairs in 40-Hz-range EEG. Phase synchrony, on average, was higher in experimental conditions, where two targets are reported, than in control conditions, where only the second target is reported. The effect occurred in electrode pairs covering the whole head. Timing of the synchrony was crucial: Brief episodes of enhanced synchrony occurred 100-500 msec before expected target onset in AB conditions where the second target was correctly reported. These results show that intrinsic brain dynamics produce anticipatory synchronization in transient assemblies of cortical areas. Enhanced levels of anticipatory synchronization occur in response to the demands of the task in conditions where the system's limited capacity is under strain.