Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Angelo Maravita
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (10): 2149–2166.
Published: 01 September 2021
FIGURES
| View All (5)
Abstract
View article
PDF
The space around our body, the so-called peripersonal space, is where interactions with nearby objects may occur. “Defensive space” and “Reaching space”, respectively, refer to two opposite poles of interaction between our body and the external environment: protecting the body and performing a goal-directed action. Here, we hypothesized that mechanisms underlying these two action spaces are differentially modulated by the valence of visual stimuli, as stimuli with negative valence are more likely to activate protective actions whereas stimuli with positive valence may activate approaching actions. To test whether such distinction in cognitive/evaluative processing exists between Reaching and Defensive spaces, we measured behavioral responses as well as neural activations over sensorimotor cortex using EEG while participants performed several tasks designed to tap into mechanisms underlying either Defensive (e.g., respond to touch) or Reaching space (e.g., estimate whether object is within reaching distance). During each task, pictures of objects with either positive or negative valence were presented at different distances from the participants' body. We found that Defensive space was smaller for positively compared with negatively valenced visual stimuli. Furthermore, sensorimotor cortex activation (reflected in modulation of beta power) during tactile processing was enhanced when coupled with negatively rather than positively valenced visual stimuli regarding Defensive space. On the contrary, both the EEG and behavioral measures capturing the mechanisms underlying Reaching space did not reveal any modulation by valence. Thus, although valence encoding had differential effects on Reaching and Defensive spaces, the distance of the visual stimulus modulated behavioral measures as well as activity over sensorimotor cortex (reflected in modulations of mu power) in a similar way for both types of spaces. Our results are compatible with the idea that Reaching and Defensive spaces involve the same distance-dependent neural representations of sensory input, whereas task goals and stimulus valence (i.e., contextual information) are implemented at a later processing stage and exert an influence on motor output rather than sensory/space encoding.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (2): 276–286.
Published: 01 February 2012
FIGURES
| View All (4)
Abstract
View article
PDF
Confronted with the loss of one type of sensory input, we compensate using information conveyed by other senses. However, losing one type of sensory information at specific developmental times may lead to deficits across all sensory modalities. We addressed the effect of auditory deprivation on the development of tactile abilities, taking into account changes occurring at the behavioral and cortical level. Congenitally deaf and hearing individuals performed two tactile tasks, the first requiring the discrimination of the temporal duration of touches and the second requiring the discrimination of their spatial length. Compared with hearing individuals, deaf individuals were impaired only in tactile temporal processing. To explore the neural substrate of this difference, we ran a TMS experiment. In deaf individuals, the auditory association cortex was involved in temporal and spatial tactile processing, with the same chronometry as the primary somatosensory cortex. In hearing participants, the involvement of auditory association cortex occurred at a later stage and selectively for temporal discrimination. The different chronometry in the recruitment of the auditory cortex in deaf individuals correlated with the tactile temporal impairment. Thus, early hearing experience seems to be crucial to develop an efficient temporal processing across modalities, suggesting that plasticity does not necessarily result in behavioral compensation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (6): 1201–1211.
Published: 01 June 2010
FIGURES
Abstract
View article
PDF
Perception of the outside world results from integration of information simultaneously derived via multiple senses. Increasing evidence suggests that the neural underpinnings of multisensory integration extend into the early stages of sensory processing. In the present study, we investigated whether the superior temporal gyrus (STG), an auditory modality-specific area, is critical for processing tactile events. Transcranial magnetic stimulation (TMS) was applied over the left STG and the left primary somatosensory cortex (SI) at different time intervals (60, 120, and 180 msec) during a tactile temporal discrimination task (Experiment 1) and a tactile spatial discrimination task (Experiment 2). Tactile temporal processing was disrupted when TMS was applied to SI at 60 msec after tactile presentation, confirming the modality specificity of this region. Crucially, TMS over STG also affected tactile temporal processing but at 180 msec delay. In both cases, the impairment was limited to the contralateral touches and was due to reduced perceptual sensitivity. In contrary, tactile spatial processing was impaired only by TMS over SI at 60–120 msec. These findings demonstrate the causal involvement of auditory areas in processing the duration of somatosensory events, suggesting that STG might play a supramodal role in temporal perception. Furthermore, the involvement of auditory cortex in somatosensory processing supports the view that multisensory integration occurs at an early stage of cortical processing.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (5): 869–877.
Published: 01 September 2000
Abstract
View article
PDF
To study the electrophysiological correlates of conscious vision, we recorded event-related potentials (ERPs) in a patient with partial unilateral visual extinction as a result of right-hemisphere damage. When, following bilateral presentations, contralesional stimuli were not perceived, there was an absence of the early attention-sensitive P1 (80-120 msec) and N1 (140-180 msec) components of the ERP response. In contrast, following unilateral presentations, or in those bilateral presentations in which contralesional stimuli were perceived (about 60%), these ERP components were present. These results provide novel evidence that extinction involves the stage of early focusing of attention and that the P1 and N1 components of visual ERPs are reliable physiological correlates of conscious vision.