Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-20 of 20
Anjan Chatterjee
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (7): 1329–1342.
Published: 01 June 2021
FIGURES
| View All (5)
Abstract
View article
PDF
Visual art offers cognitive neuroscience an opportunity to study how subjective value is constructed from representations supported by multiple neural systems. A surprising finding in aesthetic judgment research is the functional activation of motor areas in response to static, abstract stimuli, like paintings, which has been hypothesized to reflect embodied simulations of artists' painting movements, or preparatory approach–avoidance responses to liked and disliked artworks. However, whether this motor involvement functionally contributes to aesthetic appreciation has not been addressed. Here, we examined the aesthetic experiences of patients with motor dysfunction. Forty-three people with Parkinson disease and 40 controls made motion and aesthetics judgments of high-motion Jackson Pollock paintings and low-motion Piet Mondrian paintings. People with Parkinson disease demonstrated stable and internally consistent preferences for abstract art, but their perception of movement in the paintings was significantly lower than controls in both conditions. The patients also demonstrated enhanced preferences for high-motion art and an altered relationship between motion and aesthetic appreciation. Our results do not accord well with a straightforward embodied simulation account of aesthetic experiences, because artworks that did not include visual traces of the artist's actions were still experienced as lower in motion by Parkinson patients. We suggest that the motor system may be involved in integrating low-level visual features to form abstract representations of movement rather than simulations of specific bodily actions. Overall, we find support for hypotheses linking motor responses and aesthetic appreciation and show that altered neural functioning changes the way art is perceived and valued.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (9): 1521–1531.
Published: 01 September 2017
FIGURES
Abstract
View article
PDF
A burgeoning interest in the intersection of neuroscience and architecture promises to offer biologically inspired insights into the design of spaces. The goal of such interdisciplinary approaches to architecture is to motivate construction of environments that would contribute to peoples' flourishing in behavior, health, and well-being. We suggest that this nascent field of neuroarchitecture is at a pivotal point in which neuroscience and architecture are poised to extend to a neuroscience of architecture. In such a research program, architectural experiences themselves are the target of neuroscientific inquiry. Here, we draw lessons from recent developments in neuroaesthetics to suggest how neuroarchitecture might mature into an experimental science. We review the extant literature and offer an initial framework from which to contextualize such research. Finally, we outline theoretical and technical challenges that lie ahead.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (5): 959–973.
Published: 01 May 2015
FIGURES
| View All (7)
Abstract
View article
PDF
Although previous neuroimaging research has identified overlapping correlates of subjective value across different reward types in the ventromedial pFC (vmPFC), it is not clear whether this “common currency” evaluative signal extends to the aesthetic domain. To examine this issue, we scanned human participants with fMRI while they made attractiveness judgments of faces and places—two stimulus categories that are associated with different underlying rewards, have very different visual properties, and are rarely compared with each other. We found overlapping signals for face and place attractiveness in the vmPFC, consistent with the idea that this region codes a signal for value that applies across disparate reward types and across both economic and aesthetic judgments. However, we also identified a subregion of vmPFC within which activity patterns for face and place attractiveness were distinguishable, suggesting that some category-specific attractiveness information is retained in this region. Finally, we observed two separate functional regions in lateral OFC: one region that exhibited a category-unique response to face attractiveness and another region that responded strongly to faces but was insensitive to their value. Our results suggest that vmPFC supports a common mechanism for reward evaluation while also retaining a degree of category-specific information, whereas lateral OFC may be involved in basic reward processing that is specific to only some stimulus categories.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (8): 1191–1205.
Published: 01 August 2013
FIGURES
Abstract
View article
PDF
Many recent neuroimaging studies have investigated the representation of semantic memory for actions in the brain. We used activation likelihood estimation (ALE) meta-analyses to answer two outstanding questions about the neural basis of action concepts. First, on an “embodied” view of semantic memory, evidence to date is unclear regarding whether visual motion or motor systems are more consistently engaged by action concepts. Second, few studies have directly investigated the possibility that action concepts accessed verbally or nonverbally recruit different areas of the brain. Because our meta-analyses did not include studies requiring the perception of dynamic depictions of actions or action execution, we were able to determine whether conceptual processing alone recruits visual motion and motor systems. Significant concordance in brain regions within or adjacent to visual motion areas emerged in all meta-analyses. By contrast, we did not observe significant concordance in motor or premotor cortices in any analysis. Neural differences between action images and action verbs followed a gradient of abstraction among representations derived from visual motion information in the left lateral temporal and occipital cortex. The consistent involvement of visual motion but not motor brain regions in representing action concepts may reflect differences in the variability of experience across individuals with perceiving versus performing actions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (1): 1–16.
Published: 01 January 2012
FIGURES
| View All (5)
Abstract
View article
PDF
Space, time, and causality provide a natural structure for organizing our experience. These abstract categories allow us to think relationally in the most basic sense; understanding simple events requires one to represent the spatial relations among objects, the relative durations of actions or movements, and the links between causes and effects. The present fMRI study investigates the extent to which the brain distinguishes between these fundamental conceptual domains. Participants performed a 1-back task with three conditions of interest (space, time, and causality). Each condition required comparing relations between events in a simple verbal narrative. Depending on the condition, participants were instructed to either attend to the spatial, temporal, or causal characteristics of events, but between participants each particular event relation appeared in all three conditions. Contrasts compared neural activity during each condition against the remaining two and revealed how thinking about events is deconstructed neurally. Space trials recruited neural areas traditionally associated with visuospatial processing, primarily bilateral frontal and occipitoparietal networks. Causality trials activated areas previously found to underlie causal thinking and thematic role assignment, such as left medial frontal and left middle temporal gyri, respectively. Causality trials also produced activations in SMA, caudate, and cerebellum; cortical and subcortical regions associated with the perception of time at different timescales. The time contrast, however, produced no significant effects. This pattern, indicating negative results for time trials but positive effects for causality trials in areas important for time perception, motivated additional overlap analyses to further probe relations between domains. The results of these analyses suggest a closer correspondence between time and causality than between time and space.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (2): 306–324.
Published: 01 February 2011
FIGURES
| View All (6)
Abstract
View article
PDF
In social situations, we encounter information transferred in firsthand (egocentric) and secondhand (allocentric) communication contexts. However, the mechanism by which an individual distinguishes whether a past interaction occurred in an egocentric versus allocentric situation is poorly understood. This study examined the neural bases for encoding memories of social interactions through experimentally manipulating the communication context. During fMRI data acquisition, participants watched video clips of an actor speaking and gesturing directly toward them (egocentric context) or toward an unseen third person (allocentric context). After scanning, a recognition task gauged participants' ability to recognize the sentences they had just seen and to recall the context in which the sentences had been spoken. We found no differences between the recognition of sentences spoken in egocentric and allocentric contexts. However, when asked about the communication context (“Had the actor directly spoken to you?”), participants tended to believe falsely that the actor had directly spoken to them during allocentric conditions. Greater activity in the hippocampus was related to correct context memory, whereas the ventral ACC was activated for subsequent inaccurate context memory. For the interaction between encoding context and context memory, we observed increased activation for egocentric remembered items in the bilateral and medial frontal cortex, the BG, and the left parietal and temporal lobe. Our data indicate that memories of social interactions are biased to be remembered egocentrically. Self-referential encoding processes reflected in increased frontal activation and decreased hippocampal activation might be the basis of correct item but false context memory of social interactions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (1): 53–62.
Published: 01 January 2011
Abstract
View article
PDF
Neuroaesthetics is gaining momentum. At this early juncture, it is worth taking stock of where the field is and what lies ahead. Here, I review writings that fall under the rubric of neuroaesthetics. These writings include discussions of the parallel organizational principles of the brain and the intent and practices of artists, the description of informative anecdotes, and the emergence of experimental neuroaesthetics. I then suggest a few areas within neuroaesthetics that might be pursued profitably. Finally, I raise some challenges for the field. These challenges are not unique to neuroaesthetics. As neuroaesthetics comes of age, it might take advantage of the lessons learned from more mature domains of inquiry within cognitive neuroscience.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (8): 1739–1753.
Published: 01 August 2010
FIGURES
| View All (8)
Abstract
View article
PDF
Studies in semantics traditionally focus on knowledge of objects. By contrast, less is known about how objects relate to each other. In an fMRI study, we tested the hypothesis that the neural processing of categorical spatial relations between objects is distinct from the processing of the identity of objects. Attending to the categorical spatial relations compared with attending to the identity of objects resulted in greater activity in superior and inferior parietal cortices (especially on the left) and posterior middle frontal cortices bilaterally. In an accompanying lesion study, we tested the hypothesis that comparable areas would be necessary to represent categorical spatial relations and that the hemispheres differ in their biases to process categorical or coordinate spatial relations. Voxel-based lesion symptom mapping results were consistent with the fMRI observations. Damage to a network comprising left inferior frontal, supramarginal, and angular gyri resulted in behavioral impairment on categorical spatial judgments. Homologous right brain damage also produced such deficits, albeit less severely. The reverse pattern was observed for coordinate spatial processing. Right brain damage to the middle temporal gyrus produced more severe deficits than left hemisphere damage. Additional analyses suggested that some areas process both kinds of spatial relations conjointly and others distinctly. The left angular and inferior frontal gyrus processes coordinate spatial information over and above the categorical processing. The anterior superior temporal gyrus appears to process categorical spatial information uniquely. No areas within the right hemisphere processed categorical spatial information uniquely. Taken together, these findings suggest that the functional neuroanatomy of categorical and coordinate processing is more nuanced than implied by a simple hemispheric dichotomy.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (4): 821–836.
Published: 01 April 2009
Abstract
View article
PDF
In human face-to-face communication, the content of speech is often illustrated by coverbal gestures. Behavioral evidence suggests that gestures provide advantages in the comprehension and memory of speech. Yet, how the human brain integrates abstract auditory and visual information into a common representation is not known. Our study investigates the neural basis of memory for bimodal speech and gesture representations. In this fMRI study, 12 participants were presented with video clips showing an actor performing meaningful metaphoric gestures (MG), unrelated, free gestures (FG), and no arm and hand movements (NG) accompanying sentences with an abstract content. After the fMRI session, the participants performed a recognition task. Behaviorally, the participants showed the highest hit rate for sentences accompanied by meaningful metaphoric gestures. Despite comparable old/new discrimination performances ( d ′) for the three conditions, we obtained distinct memory-related left-hemispheric activations in the inferior frontal gyrus (IFG), the premotor cortex (BA 6), and the middle temporal gyrus (MTG), as well as significant correlations between hippocampal activation and memory performance in the metaphoric gesture condition. In contrast, unrelated speech and gesture information (FG) was processed in areas of the left occipito-temporal and cerebellar region and the right IFG just like the no-gesture condition (NG). We propose that the specific left-lateralized activation pattern for the metaphoric speech–gesture sentences reflects semantic integration of speech and gestures. These results provide novel evidence about the neural integration of abstract speech and gestures as it contributes to subsequent memory performance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (6): 1107–1113.
Published: 01 June 2008
Abstract
View article
PDF
Neuropsychological work is the historical foundation of cognitive neuroscience and continues to be an important method in the study of the neural basis of human behavior, complementing newer techniques for investigating brain structure-function relationships in human subjects. Recent advances in neuroimaging, statistics and information management provide powerful tools to support neuropsychological research. At the same time, changing ethical requirements and privacy concerns impose increasingly high standards on the procedures used to recruit research participants, and on subsequent data management. Shared, centrally managed research registries provide a framework for facilitating access to this method for nonclinicians, addressing ethical concerns, streamlining recruitment and screening procedures, and coordinating subsequent research contacts and data storage. We report the experience of two such registries: the patient database of the Center for Cognitive Neuroscience at the University of Pennsylvania, and the Cognitive Neuroscience Research Registry at McGill University.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (9): 1542–1555.
Published: 01 September 2007
Abstract
View article
PDF
Lexical-semantic investigations in cognitive neuroscience have focused on conceptual knowledge of concrete objects. By contrast, relational concepts have been largely ignored. We examined thematic role and locative knowledge in 14 left-hemisphere-damage patients. Relational concepts shift cognitive focus away from the object to the relationship between objects, calling into question the relevance of traditional sensory-functional accounts of semantics. If extraction of a relational structure is the critical cognitive process common to both thematic and locative knowledge, then damage to neural structures involved in such an extraction would impair both kinds of knowledge. If the nature of the relationship itself is critical, then functional neuroanatomical dissociations should occur. Using a new lesion analysis method, we found that damage to the lateral temporal cortex produced deficits in thematic role knowledge and damage to inferior fronto-parietal regions produced deficits in locative knowledge. In addition, we found that conceptual knowledge of thematic roles dissociates from its mapping onto language. These relational knowledge deficits were not accounted for by deficits in processing nouns or verbs or by a general deficit in making inferences. Our results are consistent with the hypothesis that manners of visual motion serve as a point of entry for thematic role knowledge and networks dedicated to eye gaze, whereas reaching and grasping serve as a point of entry for locative knowledge. Intermediary convergence zones that are topographically guided by these sensory-motor points of entry play a critical role in the semantics of relational concepts.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (11): 1913–1923.
Published: 01 November 2006
Abstract
View article
PDF
Normal functioning of the attentional orienting system is critical for effective behavior and is predicated on a balanced interaction between goal-directed (endogenous) processes and stimulus-driven (exogenous) processes. Although both systems have been subject to much investigation, little is known about the neural underpinnings of exogenous orienting. In the present study, we examined the early facilitatory effects and later inhibition of return effects of exogenous cues in patients with frontal and parietal lesions. Three novel findings emerged from this study. First, unilateral frontoparietal damage appears not to affect the early facilitation effects of exogenous cues. Second, dorsolateral prefrontal damage, especially lesions involving the inferior frontal gyrus, produces an exogenous disengage deficit (i.e., the sluggish withdrawal of attention from the ipsilesional to the contralesional field). Third, a subset of patients with dorsolateral prefrontal damage, with lesions involving the middle frontal gyrus, have a reorienting deficit that extends in duration well beyond established boundaries of the normal reflexive orienting system. These results suggest that the dorsolateral prefrontal cortex plays an important role in exogenous orienting and that component processes of this system may be differentially impaired by damage to different parts of the dorsolateral prefrontal cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (9): 1498–1517.
Published: 01 September 2006
Abstract
View article
PDF
The ability to recognize actions is important for cognitive development and social cognition. Areas in the lateral occipitotemporal cortex show increased activity when subjects view action sequences; however, whether this activity distinguishes between specific actions as necessary for action recognition is unclear. We used a functional magnetic resonance imaging adaptation paradigm to test for brain regions that exhibit action-specific activity. Subjects watched a series of action sequences in which the action performed or the person performing the action could be repeated from a previous scan. Three regions—the superior temporal sulcus (pSTS), human motion-sensitive cortex (MT/MST), and extrastriate body area (EBA)—showed decreased activity for previously seen actions, even when the actions were novel exemplars because the persons involved had not been seen previously. These action-specific adaptation effects provide compelling evidence that representations in the pSTS, MT/MST, and EBA abstract actions from the agents involved and distinguish between different particular actions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (7): 1087–1097.
Published: 01 July 2006
Abstract
View article
PDF
The canonical description of the role of the medial temporal lobes (MTLs) in memory is that short-term forms of memory (e.g., working memory [WM]) are spared when the MTL is damaged, but longer term forms of memory are impaired. Tests used to assess this have typically had a heavy verbal component, potentially allowing explicit rehearsal strategies to maintain the WM trace over the memory delay period. Here we test the hypothesis that the MTL is necessary for visual WM when verbal rehearsal strategies are difficult to implement. In three patients with MTL damage we found impairments in spatial, face, and color WM, at delays as short as 4 sec. Impaired memory could not be attributed to memory load or perceptual problems. These findings suggest that the MTLs are critical for accurate visual WM.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (2): 267–277.
Published: 01 February 2006
Abstract
View article
PDF
A number of theories about the evolution of language posit a close (and perhaps causal) relationship between tool use and speech. Consistent with this idea, neuroimaging studies have found that tool knowledge retrieval activates not only a region of the left premotor cortex involved in hand action, but also an adjacent region that is typically described as a language center. We examined whether this pattern of activation is best described as the result of a single process, related to both action and language, or the result of two independent processes. We identified two distinct neural components that jointly contribute to this response: a posterior region centered in the premotor cortex, which responds to motor knowledge retrieval, and an anterior region centered in the left frontal operculum, which responds to lexical competition. Crucial to the interpretation of the premotor response, individual variation in motor experience was highly correlated with the magnitude of the response in the premotor cortex, but not in the prefrontal cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (12): 1855–1870.
Published: 01 December 2005
Abstract
View article
PDF
Retrieval of conceptual information from action pictures causes greater activation than from object pictures bilaterally in human motion areas (MT/MST) and nearby temporal regions. By contrast, retrieval of conceptual information from action words causes greater activation in left middle and superior temporal gyri, anterior and dorsal to the MT/MST. We performed two fMRI experiments to replicate and extend these findings regarding action words. In the first experiment, subjects performed conceptual judgments of action and object words under conditions that stressed visual semantic information. Under these conditions, action words again activated posterior temporal regions close to, but not identical with, the MT/MST. In the second experiment, we included conceptual judgments of manipulable object words in addition to judgments of action and animal words. Both action and manipulable object judgments caused greater activity than animal judgments in the posterior middle temporal gyrus. Both of these experiments support the hypothesis that middle temporal gyrus activation is related to accessing conceptual information about motion attributes, rather than alternative accounts on the basis of lexical or grammatical factors. Furthermore, these experiments provide additional support for the notion of a concrete to abstract gradient of motion representations with the lateral occipito-temporal cortex, extending anterior and dorsal from the MT/MST towards the peri-sylvian cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (8): 1194–1211.
Published: 01 August 2005
Abstract
View article
PDF
Crossover refers to a pattern of performance on the line bisection test in which short lines are bisected on the side opposite the true center of long lines. Although most patients with spatial neglect demonstrate crossover, contemporary theories of neglect cannot explain it. In contrast, we show that blending the psychophysical construct of magnitude estimation with neglect theory not only explains crossover, but also addresses a quantitative feature of neglect that is independent of spatial deficits. We report a prospective validation study of the orientation/estimation hypothesis of crossover. Forty subjects (17 patients with and without neglect following unilateral brain injury and 23 normal controls) completed four experiments that examined crossover using line bisection, line bisection with cueing, and reproducing line lengths from both memory and a standard. Replicating earlier findings, all except one subject group exhibited crossover on the standard line bisection test, all groups showed a spontaneous preference to orient attention to one end of the lines, and all groups overestimated the length of short lines and underestimated long lines. Biases in attentional orientation and magnitude estimation are exaggerated in patients with neglect. The truly novel finding of this study occurred when, after removing the line from the bisection task, the direction of crossover was completely reversed in all subject groups depending on where attention was oriented. These findings are consistent with our hypothesis of crossover: (1) crossover is a normal component of performance on line bisection; (2) crossover results from the interplay of biases in attentional orientation and magnitude estimation; and (3) attentional orientation predicts the direction of crossover, whereas a disorder of magnitude estimation, not previously emphasized in neglect, accounts for the quantitative changes in length estimation that make crossover more obvious in neglect subjects. Paradoxically, we observed that the traditional line bisection test is suboptimal for exploring crossover because lines elicit spontaneous orientation responses from subjects that confound experimental manipulations of attention. We conclude that attentional orientation and magnitude estimation are necessary and sufficient to explain crossover and that bias in magnitude estimation is a core component of neglect.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (6): 847–849.
Published: 01 June 2005
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (5): 795–805.
Published: 01 July 2002
Abstract
View article
PDF
Human concepts can be roughly divided into entities (prototypically referred to in language by nouns) and events (prototypically referred to in language by verbs). While much work in cognitive neuroscience has investigated how the brain represents different categories of entities, less attention has been given to the more basic distinction between entities and events. We used functional magnetic resonance imaging to examine brain activity while subjects performed a conceptual matching task that required them to access knowledge of objects and actions, using either pictures or words. Since action events involve movement through space, we hypothesized that accessing knowledge of actions would cause greater activation in brain regions involved in motion or spatial processing. In comparison to objects, accessing knowledge of actions through pictures was accompanied by increased activity bilaterally in the human MT/MST and nearby regions of the lateral temporal cortex. Accessing knowledge of actions through words activated areas just anterior and dorsal to area MT/MST on the left, within the posterior aspect of the middle and superior temporal gyri. We propose that the lateral occipital temporal cortex contains a mosaic of neural regions that processes different kinds of motion, ranging from the perception of objects moving in the world to the conception of movement implied in action verbs. The lateral occipital temporal cortex mediates the perceptual and conceptual features of action events, similar to the way that the ventral occipital temporal cortex processes the perceptual and conceptual features of entities.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (2): 181–189.
Published: 15 February 2001
Abstract
View article
PDF
Behavioral and neurophysiological studies suggest that the brain constructs different representations of space. Among these representations are personal and peripersonal space. Personal space refers to the space occupied by our bodies. Peripersonal space refers to the space surrounding our bodies, which can be reached by our limbs. How these two representations are bound to give a unified sense of space in which humans act is not clear. We tested 10 patients with tactile extinction to investigate this issue. Tactile extinction is an attentional disorder in which patients are unaware of being touched on their contralesional limb if they are also touched simultaneously on their ipsilesional limb. We hypothesized that mechanisms that bind personal and peripersonal representations would improve these patients' awareness of being touched on their contralesional limbs. Visual-tactile integration and intentional movements were considered candidate mechanisms. Patients were more likely to be aware of contralesional touch when looking towards their contralesional limb than when looking towards their ipsilesional limb, and when actively moving on tactile probes than when receiving tactile stimuli passively. The improved awareness of being touched on the contralesional limb under these conditions suggests that cross-sensory and sensorimotor integration help bind personal and peripersonal space.