Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-11 of 11
Anna Christina Nobre
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (5): 686–698.
Published: 01 May 2019
FIGURES
| View All (6)
Abstract
View article
PDF
Social attention when viewing natural social (compared with nonsocial) images has functional consequences on contextual memory in healthy human adults. In addition to attention affecting memory performance, strong evidence suggests that memory, in turn, affects attentional orienting. Here, we ask whether the effects of social processing on memory alter subsequent memory-guided attention orienting and corresponding anticipatory dynamics of 8–12 Hz alpha-band oscillations as measured with EEG. Eighteen young adults searched for targets in scenes that contained either social or nonsocial distracters and their memory precision tested. Subsequently, RT was measured as participants oriented to targets appearing in those scenes at either valid (previously learned) locations or invalid (different) locations. Memory precision was poorer for target locations in social scenes. In addition, distractor type moderated the validity effect during memory-guided attentional orienting, with a larger cost in RT when targets appeared at invalid (different) locations within scenes with social distractors. The poorer memory performance was also marked by reduced anticipatory dynamics of spatially lateralized 8–12 Hz alpha-band oscillations for scenes with social distractors. The functional consequences of a social attention bias therefore extend from memory to memory-guided attention orienting, a bidirectional chain that may further reinforce attentional biases.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (9): 1473–1482.
Published: 01 September 2017
Abstract
View article
PDF
Development of measures to preserve cognitive function or even reverse cognitive decline in the ever-growing elderly population is the focus of many research and commercial efforts. One such measure gaining in popularity is the development of computer-based interventions that “exercise” cognitive functions. Computer-based cognitive training has the potential to be specific and flexible, accommodates feedback, and is highly accessible. As in most budding fields, there are still considerable inconsistencies across methodologies and results, as well as a lack of consensus on a comprehensive assessment protocol. We propose that the success of training-based therapeutics will rely on targeting specific cognitive functions, informed by comprehensive and sensitive batteries that can provide a “fingerprint” of an individual's abilities. Instead of expecting a panacea from training regimens, focused and personalized training interventions that accommodate individual differences should be developed to redress specific patterns of deficits in cognitive rehabilitation, both in healthy aging and in disease.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (7): 996–1009.
Published: 01 July 2016
FIGURES
| View All (5)
Abstract
View article
PDF
A critical requirement of an efficient cognitive system is the selection and prioritization of relevant information. This occurs when selecting specific items from our sensory inputs, which then receive preferential status at subsequent levels of processing. Many everyday tasks also require us to select internal representations, such as a relevant item from memory. We show that both of these types of search are underpinned by the spatiotopic activation of sensory codes, using both fMRI and MEG data. When individuals searched for perceived and remembered targets, the MEG data highlighted a sensor level electrophysiological effect that reflects the contralateral organization of the visual system—namely, the N2pc. The fMRI data were used to identify a network of frontoparietal areas common to both types of search, as well as the early visual areas activated by the search display. We then combined fMRI and MEG data to explore the temporal dynamics of functional connections between the frontoparietal network and the early visual areas. Searching for a target item resulted in significantly enhanced phase–phase coupling between the frontoparietal network and the visual areas contralateral to the perceived or remembered location of that target. This enhancement of spatially specific phase–phase coupling occurred before the N2pc effect and was significantly associated with it on a trial-by-trial basis. The combination of these two imaging modalities suggests that perceptual and working memory search are underpinned by the synchronization of a frontoparietal network and the relevant sensory cortices.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (10): 2019–2034.
Published: 01 October 2015
FIGURES
| View All (5)
Abstract
View article
PDF
We used magnetoencephalography to characterize the spatiotemporal dynamics of cortical activity during top–down control of working memory (WM). fMRI studies have previously implicated both the frontoparietal and cingulo-opercular networks in control over WM, but their respective contributions are unclear. In our task, spatial cues indicating the relevant item in a WM array occurred either before the memory array or during the maintenance period, providing a direct comparison between prospective and retrospective control of WM. We found that in both cases a frontoparietal network activated following the cue, but following retrocues this activation was transient and was succeeded by a cingulo-opercular network activation. We also characterized the time course of top–down modulation of alpha activity in visual/parietal cortex. This modulation was transient following retrocues, occurring in parallel with the frontoparietal network activation. We suggest that the frontoparietal network is responsible for top–down modulation of activity in sensory cortex during both preparatory attention and orienting within memory. In contrast, the cingulo-opercular network plays a more downstream role in cognitive control, perhaps associated with output gating of memory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (7): 1377–1389.
Published: 01 July 2014
FIGURES
| View All (5)
Abstract
View article
PDF
In the current study, we tested whether representations in visual STM (VSTM) can be biased via top–down attentional modulation of visual activity in retinotopically specific locations. We manipulated attention using retrospective cues presented during the retention interval of a VSTM task. Retrospective cues triggered activity in a large-scale network implicated in attentional control and led to retinotopically specific modulation of activity in early visual areas V1–V4. Importantly, shifts of attention during VSTM maintenance were associated with changes in functional connectivity between pFC and retinotopic regions within V4. Our findings provide new insights into top–down control mechanisms that modulate VSTM representations for flexible and goal-directed maintenance of the most relevant memoranda.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (2): 245–257.
Published: 01 February 2013
FIGURES
| View All (4)
Abstract
View article
PDF
Long-term spatial contextual memories are a rich source of predictions about the likely locations of relevant objects in the environment and should enable tuning of neural processing of unfolding events to optimize perception and action. Of particular importance is whether and how the reward outcome of past events can impact perception. We combined behavioral measures with recordings of brain activity with high temporal resolution to test whether the previous reward outcome associated with a memory could modulate the impact of memory-based biases on perception, and if so, the level(s) at which visual neural processing is biased by reward-associated memory-guided attention. Data showed that past rewards potentiate the effects of spatial memories upon the discrimination of target objects embedded within complex scenes starting from early perceptual stages. We show that a single reward outcome of learning impacts on how we perceive events in our complex environments.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (12): 2281–2291.
Published: 01 December 2012
FIGURES
| View All (4)
Abstract
View article
PDF
In everyday situations, we often rely on our memories to find what we are looking for in our cluttered environment. Recently, we developed a new experimental paradigm to investigate how long-term memory (LTM) can guide attention and showed how the pre-exposure to a complex scene in which a target location had been learned facilitated the detection of the transient appearance of the target at the remembered location [Summerfield, J. J., Rao, A., Garside, N., & Nobre, A. C. Biasing perception by spatial long-term memory. The Journal of Neuroscience, 31, 14952–14960, 2011; Summerfield, J. J., Lepsien, J., Gitelman, D. R., Mesulam, M. M., & Nobre, A. C. Orienting attention based on long-term memory experience. Neuron, 49, 905–916, 2006]. This study extends these findings by investigating whether and how LTM can enhance perceptual sensitivity to identify targets occurring within their complex scene context. Behavioral measures showed superior perceptual sensitivity ( d ′) for targets located in remembered spatial contexts. We used the N2pc ERP to test whether LTM modulated the process of selecting the target from its scene context. Surprisingly, in contrast to effects of visual spatial cues or implicit contextual cueing, LTM for target locations significantly attenuated the N2pc potential. We propose that the mechanism by which these explicitly available LTMs facilitate perceptual identification of targets may differ from mechanisms triggered by other types of top–down sources of information.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (1): 51–60.
Published: 01 January 2012
FIGURES
Abstract
View article
PDF
Recent studies have shown that selective attention is of considerable importance for encoding task-relevant items into visual short-term memory (VSTM) according to our behavioral goals. However, it is not known whether top–down attentional biases can continue to operate during the maintenance period of VSTM. We used ERPs to investigate this question across two experiments. Specifically, we tested whether orienting attention to a given spatial location within a VSTM representation resulted in modulation of the contralateral delay activity (CDA), a lateralized ERP marker of VSTM maintenance generated when participants selectively encode memory items from one hemifield. In both experiments, retrospective cues during the maintenance period could predict a specific item (spatial retrocue) or multiple items (neutral retrocue) that would be probed at the end of the memory delay. Our results revealed that VSTM performance is significantly improved by orienting attention to the location of a task-relevant item. The behavioral benefit was accompanied by modulation of neural activity involved in VSTM maintenance. Spatial retrocues reduced the magnitude of the CDA, consistent with a reduction in memory load. Our results provide direct evidence that top–down control modulates neural activity associated with maintenance in VSTM, biasing competition in favor of the task-relevant information.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (12): 2369–2383.
Published: 01 December 2009
Abstract
View article
PDF
We developed a new experimental task to investigate the relative timing of neural activity during shifts of spatial attention with event-related potentials. The task enabled the investigation of nonlateralized as well as lateralized neural activity associated with spatial shifts. Participants detected target stimuli within one of two peripheral streams of visual letters. Colored letters embedded within the streams indicated which stream was to be used for target detection, signaling that participants should “hold” or “shift” their current focus of spatial attention. A behavioral experiment comparing performance in these focused-attention conditions with performance in a divided-attention condition confirmed the efficacy of the spatial cues. Another behavioral experiment showed that overt shifts of spatial attention were mainly complete by around 400 msec, placing an upper boundary for isolating neural activity that was instrumental in controlling spatial shifts. Event-related potentials recorded during a covert version of the focused-attention task showed a large amount of nonlateralized neural activity associated with spatial shifts, with significant effects starting around 330 msec. The effects started over posterior scalp regions, where they remained pronounced. Transient effects were also observed over frontal scalp regions. The results are compatible with a pivotal role of posterior parietal areas in initiating shifts of spatial attention.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (5): 787–801.
Published: 01 May 2008
Abstract
View article
PDF
In the present study, we investigated the ability to orient attention to abstract associative features of complex stimuli, more specifically, to the semantic categories of visual word stimuli. We compared the behavioral and electrophysiological effects of semantic orienting with those elicited by spatial orienting to word stimuli. Two parallel, cued lexical-decision tasks, with semantic- or spatial-orienting cues, were used. Results showed that both semantic and spatial orienting facilitated behavioral performance. The event-related potential analysis revealed different and non-overlapping patterns of modulation of word processing by semantic and spatial orienting. Modulation by semantic orienting started later, affecting only the potentials linked to conceptual or semantic processing (N300 and N400). The pattern of N300/N400 modulation in the semantic-orienting condition was similar to that observed in semantic-priming tasks, and was compatible with the operation of controlled semantic processes. Spatial orienting significantly enhanced the amplitude of the early visual potential P1 as well as the language-related N400 potential. These findings showed that the similar end-result of behavioral facilitation by semantic and spatial orienting is achieved through largely distinct mechanisms acting upon separate levels of stimulus analysis.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (4): 539–561.
Published: 01 April 2006
Abstract
View article
PDF
Evidence regarding the ability of attention to bias neural processing at the level of single features has been gathering steadily, but most of the experiments to date used arrays with multiple objects and locations, making it difficult to rule out indirect influences from object or spatial attention. To investigate feature-specific selective attention, we have assessed the ability to select and ignore individual features within the same object. We used a negative-priming paradigm in which the color or the direction of internal motion of the object could determine the relevant response. Bidimensional (colored and moving) and unidimensional (colored and stationary, or gray and moving) stimuli appeared in unpredictable order. In successive blocks, participants were instructed that one feature dimension was dominant. During that block, participants responded according to the dominant dimension for bidimensional stimuli. For unidimensional stimuli, participants responded to the only dimension of the stimulus that afforded a response, regardless of the instruction for the block. The ability to inhibit irrelevant task information at the level of specific features (negative priming for features) was indexed by a decrease in performance to detect one particular feature value (e.g., red) if the same feature value (red) but not another color value (green) had been ignored in the previous bidimensional stimulus. Behavioral results confirmed the existence of inhibitory, negative-priming mechanisms at the singlefeature level for both color and motion dimensions of stimuli. Event-related potentials recorded during task performance revealed the dynamics of neural modulation by feature attention. Comparisons were made using the identical physical stimuli under different conditions of attention to isolate purely attentional effects. Processing of identical bidimensional stimuli was compared as a function of the dimension of attention (color, motion). Processing of identical unidimensional stimuli that followed bidimensional stimuli was also compared to identify possible effects of feature-specific negative priming. The electrophysiological effects revealed that inhibition of irrelevant features leads to modulation of brain activity during early stages of perceptual analysis.