Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Anna Karmann
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (7): 1148–1162.
Published: 01 July 2013
FIGURES
| View All (7)
Abstract
View article
PDF
Grapheme–color synesthesia is a perceptual phenomenon where single graphemes (e.g., the letter “E”) induce simultaneous sensations of colors (e.g., the color green) that were not objectively shown. Current models disagree as to whether the color sensations arise from increased short-range connectivity between anatomically adjacent grapheme- and color-processing brain structures or from decreased effectiveness of inhibitory long-range connections feeding back into visual cortex. We addressed this issue by examining neural synchrony obtained from EEG activity, in a sample of grapheme–color synesthetes that were presented with color-inducing versus non-color-inducing graphemes. For color-inducing graphemes, the results showed a decrease in the number of long-range couplings in the theta frequency band (4–7 Hz, 280–540 msec) and a concurrent increase of short-range phase-locking within lower beta band (13–20 Hz, 380–420 msec at occipital electrodes). Because the effects were both found in long-range synchrony and later within the visual processing stream, the results support the idea that reduced inhibition is an important factor for the emergence of synesthetic colors.