Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Anne S. Berry
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (9): 1330–1344.
Published: 01 September 2018
FIGURES
| View All (4)
Abstract
View article
PDF
Dopaminergic signaling in striatum is strongly implicated in executive functions including cognitive flexibility. However, there is a paucity of multimodal research in humans defining the nature of relationships between endogenous dopamine, striatal network activity, and cognition. Here, we measured dopamine synthesis capacity in young and older adults using the PET tracer 6-[ 18 F]fluoro- l - m -tyrosine and examined its relationship with cognitive performance and functional connectivity during an fMRI study of task switching. Aging is associated with alteration in dopamine function, including profound losses in dopamine receptors but an apparent elevation in dopamine synthesis. A compensatory benefit of upregulated dopamine synthesis in aging has not been established. Across young and older adults, we found that cognitive flexibility (low behavioral switch cost) was associated with stronger task-related functional connectivity within canonical fronto-striato-thalamic circuits connecting left inferior frontal gyrus, dorsal caudate nucleus (DCA) and ventral lateral/ventral anterior thalamic nuclei. In young adults, functional connectivity mediated the influence of DCA dopamine synthesis capacity on switch cost. For older adults, these relationships were modified such that DCA synthesis capacity and connectivity interacted to influence switch cost. Older adults with most elevated synthesis capacity maintained the pattern of connectivity–cognition relationships observed in youth, whereas these relationships were not evident for older adults with low synthesis capacity. Together, these findings suggest a role of dopamine in tuning striatal circuits to benefit executive function in young adults and clarify the functional impact of elevated dopamine synthesis capacity in aging.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (7): 1212–1225.
Published: 01 July 2017
FIGURES
| View All (7)
Abstract
View article
PDF
We investigated the brain activity patterns associated with stabilizing performance during challenges to attention. Our findings revealed distinct patterns of frontoparietal activity and functional connectivity associated with increased attentional effort versus preserved performance during challenged attention. Participants performed a visual signal detection task with and without presentation of a perceptual-attention challenge (changing background). The challenge condition increased activation in frontoparietal regions including right mid-dorsal/dorsolateral PFC (RPFC), approximating Brodmann's area 9, and superior parietal cortex. We found that greater behavioral impact of the challenge condition was correlated with greater RPFC activation, suggesting that increased engagement of cognitive control regions is not always sufficient to maintain high levels of performance. Functional connectivity between RPFC and ACC increased during the challenge condition and was also associated with performance declines, suggesting that the level of synchronized engagement of these regions reflects individual differences in attentional effort. Pretask, resting-state RPFC–ACC connectivity did not predict subsequent performance, suggesting that RPFC–ACC connectivity increased dynamically during task performance in response to performance decrement and error feedback. In contrast, functional connectivity between RPFC and superior parietal cortex not only during the task but also during pretask rest was associated with preserved performance in the challenge condition. Together, these data suggest that resting frontoparietal connectivity predicts performance on attention tasks that rely on those same cognitive control networks and that, under challenging conditions, other control regions dynamically couple with this network to initiate the engagement of cognitive control.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (9): 1981–1991.
Published: 01 September 2014
FIGURES
Abstract
View article
PDF
Both the passage of time and external distraction make it difficult to keep attention on the task at hand. We tested the hypothesis that time-on-task and external distraction pose independent challenges to attention and that the brain's cholinergic system selectively modulates our ability to resist distraction. Participants with a polymorphism limiting cholinergic capacity (Ile89Val variant [rs1013940] of the choline transporter gene SLC5A7 ) and matched controls completed self-report measures of attention and a laboratory task that measured decrements in sustained attention with and without distraction. We found evidence that distraction and time-on-task effects are independent and that the cholinergic system is strongly linked to greater vulnerability to distraction. Ile89Val participants reported more distraction during everyday life than controls, and their task performance was more severely impacted by the presence of an ecologically valid video distractor (similar to a television playing in the background). These results are the first to demonstrate a specific impairment in cognitive control associated with the Ile89Val polymorphism and add to behavioral and cognitive neuroscience studies indicating the cholinergic system's critical role in overcoming distraction.