Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Anthony M. Norcia
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Frank J. Kanayet, Andrew Mattarella-Micke, Peter J. Kohler, Anthony M. Norcia, Bruce D. McCandliss ...
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (2): 200–218.
Published: 01 February 2018
FIGURES
| View All (7)
Abstract
View article
PDF
Mapping numbers onto space is foundational to mathematical cognition. These cognitive operations are often conceptualized in the context of a “mental number line” and involve multiple brain regions in or near the intraparietal sulcus (IPS) that have been implicated both in numeral and spatial cognition. Here we examine possible differentiation of function within these brain areas in relating numbers to spatial positions. By isolating the planning phase of a number line task and introducing spatiotopic mapping tools from fMRI into mental number line task research, we are able to focus our analysis on the neural activity of areas in anterior IPS (aIPS) previously associated with number processing and on spatiotopically organized areas in and around posterior IPS (pIPS), while participants prepare to place a number on a number line. Our results support the view that the nonpositional magnitude of a numerical symbol is coded in aIPS, whereas the position of a number in space is coded in posterior areas of IPS. By focusing on the planning phase, we are able to isolate activation related to the cognitive, rather than the sensory–motor, aspects of the task. Also, to allow the separation of spatial position from magnitude, we tested both a standard positive number line (0 to 100) and a zero-centered mixed number line (−100 to 100). We found evidence of a functional dissociation between aIPS and pIPS: Activity in aIPS was associated with a landmark distance effect not modulated by spatial position, whereas activity in pIPS revealed a contralateral preference effect.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (11): 1820–1827.
Published: 01 November 2016
FIGURES
Abstract
View article
PDF
Sensitivity to temporal change places fundamental limits on object processing in the visual system. An emerging consensus from the behavioral and neuroimaging literature suggests that temporal resolution differs substantially for stimuli of different complexity and for brain areas at different levels of the cortical hierarchy. Here, we used steady-state visually evoked potentials to directly measure three fundamental parameters that characterize the underlying neural response to text and face images: temporal resolution, peak temporal frequency, and response latency. We presented full-screen images of text or a human face, alternated with a scrambled image, at temporal frequencies between 1 and 12 Hz. These images elicited a robust response at the first harmonic that showed differential tuning, scalp topography, and delay for the text and face images. Face-selective responses were maximal at 4 Hz, but text-selective responses, by contrast, were maximal at 1 Hz. The topography of the text image response was strongly left-lateralized at higher stimulation rates, whereas the response to the face image was slightly right-lateralized but nearly bilateral at all frequencies. Both text and face images elicited steady-state activity at more than one apparent latency; we observed early (141–160 msec) and late (>250 msec) text- and face-selective responses. These differences in temporal tuning profiles are likely to reflect differences in the nature of the computations performed by word- and face-selective cortex. Despite the close proximity of word- and face-selective regions on the cortical surface, our measurements demonstrate substantial differences in the temporal dynamics of word- versus face-selective responses.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (4): 569–579.
Published: 01 April 2005
Abstract
View article
PDF
Texture discrimination and bounding contour extraction are essential parts of the object segmentation and shape discrimination process. As such, successful texture and contour processing are key components underlying the development of the perception of both objects and surfaces. By recording visual-evoked potentials, we investigate whether young infants can detect orientation-defined textures and contours. We measured responses to an organized texture comprised of many Gabor patches of the same orientation, alternated with images containing the same number of patches, but all of random orientation. These responses were compared with a control condition consisting of the alternation between two independently random configurations. Significant difference potentials were found as early as 2–5 months, as were significant odd harmonics in the test conditions. Responses were also measured to Gabor patches organized either as circles (all patches tangent to an imaginary circular path) alternated with pinwheels (all patches having a fixed orientation offset from the path). Infants between 6 and 13 months also showed sensitivity to the global organization of the elements along contours. Differential responses to our texture and contour stimuli and their controls could only have been generated by mechanisms that are capable of comparing the relative orientation of 2 or more patches, as no local information at a single patch distinguished the random and organized textures or the circle and pinwheel configurations.