Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-19 of 19
Anthony R. McIntosh
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (5): 846–863.
Published: 31 March 2022
FIGURES
| View All (6)
Abstract
View article
PDF
The brain's ability to extract information from multiple sensory channels is crucial to perception and effective engagement with the environment, but the individual differences observed in multisensory processing lack mechanistic explanation. We hypothesized that, from the perspective of information theory, individuals with more effective multisensory processing will exhibit a higher degree of shared information among distributed neural populations while engaged in a multisensory task, representing more effective coordination of information among regions. To investigate this, healthy young adults completed an audiovisual simultaneity judgment task to measure their temporal binding window (TBW), which quantifies the ability to distinguish fine discrepancies in timing between auditory and visual stimuli. EEG was then recorded during a second run of the simultaneity judgment task, and partial least squares was used to relate individual differences in the TBW width to source-localized EEG measures of local entropy and mutual information, indexing local and distributed processing of information, respectively. The narrowness of the TBW, reflecting more effective multisensory processing, was related to a broad pattern of higher mutual information and lower local entropy at multiple timescales. Furthermore, a small group of temporal and frontal cortical regions, including those previously implicated in multisensory integration and response selection, respectively, played a prominent role in this pattern. Overall, these findings suggest that individual differences in multisensory processing are related to widespread individual differences in the balance of distributed versus local information processing among a large subset of brain regions, with more distributed information being associated with more effective multisensory processing. The balance of distributed versus local information processing may therefore be a useful measure for exploring individual differences in multisensory processing, its relationship to higher cognitive traits, and its disruption in neurodevelopmental disorders and clinical conditions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (4): 734–745.
Published: 01 April 2020
FIGURES
| View All (8)
Abstract
View article
PDF
Understanding how the human brain integrates information from the environment with intrinsic brain signals to produce individual perspectives is an essential element of understanding the human mind. Brain signal complexity, measured with multiscale entropy, has been employed as a measure of information processing in the brain, and we propose that it can also be used to measure the information available from a stimulus. We can directly assess the correspondence between brain signal complexity and stimulus complexity as an indication of how well the brain reflects the content of the environment in an analysis that we term “complexity matching.” Music is an ideal stimulus because it is a multidimensional signal with a rich temporal evolution and because of its emotion- and reward-inducing potential. When participants focused on acoustic features of music, we found that EEG complexity was lower and more closely resembled the musical complexity compared to an emotional task that asked them to monitor how the music made them feel. Music-derived reward scores on the Barcelona Music Reward Questionnaire correlated with less complexity matching but higher EEG complexity. Compared with perceptual-level processing, emotional and reward responses are associated with additional internal information processes above and beyond those linked to the external stimulus. In other words, the brain adds something when judging the emotional valence of music.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (12): 2044–2058.
Published: 01 December 2016
FIGURES
| View All (5)
Abstract
View article
PDF
Musicianship has been associated with auditory processing benefits. It is unclear, however, whether pitch processing experience in nonmusical contexts, namely, speaking a tone language, has comparable associations with auditory processing. Studies comparing the auditory processing of musicians and tone language speakers have shown varying degrees of between-group similarity with regard to perceptual processing benefits and, particularly, nonlinguistic pitch processing. To test whether the auditory abilities honed by musicianship or speaking a tone language differentially impact the neural networks supporting nonlinguistic pitch processing (relative to timbral processing), we employed a novel application of brain signal variability (BSV) analysis. BSV is a metric of information processing capacity and holds great potential for understanding the neural underpinnings of experience-dependent plasticity. Here, we measured BSV in electroencephalograms of musicians, tone language-speaking nonmusicians, and English-speaking nonmusicians (controls) during passive listening of music and speech sound contrasts. Although musicians showed greater BSV across the board, each group showed a unique spatiotemporal distribution in neural network engagement: Controls had greater BSV for speech than music; tone language-speaking nonmusicians showed the opposite effect; musicians showed similar BSV for both domains. Collectively, results suggest that musical and tone language pitch experience differentially affect auditory processing capacity within the cerebral cortex. However, information processing capacity is graded: More experience with pitch is associated with greater BSV when processing this cue. Higher BSV in musicians may suggest increased information integration within the brain networks subserving speech and music, which may be related to their well-documented advantages on a wide variety of speech-related tasks.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (11): 1772–1783.
Published: 01 November 2016
FIGURES
| View All (4)
Abstract
View article
PDF
Visual behavior is guided by memories from prior experience and knowledge of the visual scene. The hippocampal system (HC), in particular, has been implicated in the guidance of saccades: Amnesic patients, following damage to the HC, exhibit selective deficits in their gaze patterns. However, the neural circuitry by which mnemonic representations influence the oculomotor system remains unknown. We used a data-driven, network-based approach on directed anatomical connectivity from the macaque brain to reveal an extensive set of polysnaptic pathways spanning the extrastriate, posterior parietal and prefrontal cortices that potentially mediate the exchange of information between the memory and visuo-oculomotor systems. We additionally show how the potential for directed information flow from the hippocampus to oculomotor control areas is exceptionally high. In particular, the dorsolateral pFC and FEF—regions known to be responsible for the cognitive control of saccades—are topologically well positioned to receive information from the hippocampus. Together with neuropsychological evidence of altered gaze patterns following damage to the hippocampus, our findings suggest that a reconsideration of hippocampal involvement in oculomotor guidance is needed.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (10): 1603–1612.
Published: 01 October 2016
FIGURES
Abstract
View article
PDF
Musical training is frequently associated with benefits to linguistic abilities, and recent focus has been placed on possible benefits of bilingualism to lifelong executive functions; however, the neural mechanisms for such effects are unclear. The aim of this study was to gain better understanding of the whole-brain functional effects of music and second-language training that could support such previously observed cognitive transfer effects. We conducted a 28-day longitudinal study of monolingual English-speaking 4- to 6-year-old children randomly selected to receive daily music or French language training, excluding weekends. Children completed passive EEG music note and French vowel auditory oddball detection tasks before and after training. Brain signal complexity was measured on source waveforms at multiple temporal scales as an index of neural information processing and network communication load. Comparing pretraining with posttraining, musical training was associated with increased EEG complexity at coarse temporal scales during the music and French vowel tasks in widely distributed cortical regions. Conversely, very minimal decreases in complexity at fine scales and trends toward coarse-scale increases were displayed after French training during the tasks. Spectral analysis failed to distinguish between training types and found overall theta (3.5–7.5 Hz) power increases after all training forms, with spatially fewer decreases in power at higher frequencies (>10 Hz). These findings demonstrate that musical training increased diversity of brain network states to support domain-specific music skill acquisition and music-to-language transfer effects.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (7): 971–984.
Published: 01 July 2016
FIGURES
| View All (6)
Abstract
View article
PDF
Recent empirical work suggests that, during healthy aging, the variability of network dynamics changes during task performance. Such variability appears to reflect the spontaneous formation and dissolution of different functional networks. We sought to extend these observations into resting-state dynamics. We recorded EEG in young, middle-aged, and older adults during a “rest–task–rest” design and investigated if aging modifies the interaction between resting-state activity and external stimulus-induced activity. Using multiscale entropy as our measure of variability, we found that, with increasing age, resting-state dynamics shifts from distributed to more local neural processing, especially at posterior sources. In the young group, resting-state dynamics also changed from pre- to post-task, where fine-scale entropy increased in task-positive regions and coarse-scale entropy increased in the posterior cingulate, a key region associated with the default mode network. Lastly, pre- and post-task resting-state dynamics were linked to performance on the intervening task for all age groups, but this relationship became weaker with increasing age. Our results suggest that age-related changes in resting-state dynamics occur across different spatial and temporal scales and have consequences for information processing capacity.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (3): 605–613.
Published: 01 March 2015
FIGURES
Abstract
View article
PDF
The human brain undergoes marked structural changes with age including cortical thinning and reduced connectivity because of the degradation of myelin. Although these changes can compromise cognitive function, the brain is able to functionally reorganize to compensate for some of this structural loss. However, there are interesting individual differences in outcome: When comparing individuals of similar age, those who engage in regular physical activity are less affected by the typical age-related decline in cognitive function. This study used multiscale entropy to reveal a shift in the way the brain processes information in older adults that is related to physical activity. Specifically, older adults who were more physically active engaged in more local neural information processing. Interestingly, this shift toward local information processing was also associated with improved executive function performance in older adults, suggesting that physical activity may help to improve aspects of cognitive function in older adults by biasing the neural system toward local information processing. In the face of age-related structural decline, the neural plasticity that is enhanced through physical activity may help older adults maintain cognitive health longer into their lifespan.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (10): 2416–2430.
Published: 01 October 2014
FIGURES
| View All (9)
Abstract
View article
PDF
Given their unique connectivity, a primary function of brain networks must be to transfer and integrate information. Therefore, the way in which information is integrated by individual nodes of the network may be an informative aspect of cognitive processing. Here we present a method inspired by telecommunications research that utilizes time–frequency fluctuations of neural activity to infer how information is integrated by individual nodes of the network. We use a queueing theoretical model to interpret empirical data in terms of information processing and integration. In particular, we demonstrate, in participants aged from 6 to 41 years, that the well-known face inversion phenomenon may be explained in terms of information integration. Our model suggests that inverted faces may be associated with shorter and more frequent neural integrative stages, indicating fractured processing and consistent with the notion that inverted faces are perceived by parts. Conversely, our model suggests that upright faces may be associated with a smaller number of sustained episodes of integration, indicating more involved processing, akin to holistic and configural processing. These differences in how upright and inverted faces are processed became more pronounced during development, indicating a gradual specialization for face perception. These effects were robustly expressed in the right fusiform gyrus (all groups), as well as right parahippocampal gyrus (children and adolescents only) and left inferior temporal cortex (adults only).
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (1): 41–53.
Published: 01 January 2014
FIGURES
Abstract
View article
PDF
Episodic memory and semantic memory produce very different subjective experiences yet rely on overlapping networks of brain regions for processing. Traditional approaches for characterizing functional brain networks emphasize static states of function and thus are blind to the dynamic information processing within and across brain regions. This study used information theoretic measures of entropy to quantify changes in the complexity of the brain's response as measured by magnetoencephalography while participants listened to audio recordings describing past personal episodic and general semantic events. Personal episodic recordings evoked richer subjective mnemonic experiences and more complex brain responses than general semantic recordings. Critically, we observed a trade-off between the relative contribution of local versus distributed entropy, such that personal episodic recordings produced relatively more local entropy whereas general semantic recordings produced relatively more distributed entropy. Changes in the relative contributions of local and distributed entropy to the total complexity of the system provides a potential mechanism that allows the same network of brain regions to represent cognitive information as either specific episodes or more general semantic knowledge.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (4): 801–815.
Published: 01 April 2011
FIGURES
| View All (4)
Abstract
View article
PDF
This study used fMRI to investigate the neural effects of increasing cognitive demands in normal aging and their role for performance. Simple and complex go/no-go tasks were used with two versus eight colored letters as go stimuli, respectively. In both tasks, no-go stimuli could produce high conflict (same letter, different color) or low conflict (colored numbers) with go stimuli. Multivariate partial least square analysis of fMRI data showed that older adults overengaged a cohesive pattern of fronto-parietal regions with no-go stimuli under the specific combination of factors which progressively amplified task demands: high conflict no-go trials in the first phase of the complex task. This early neural overrecruitment was positively correlated with a lower error rate in the older group. Thus, the present data suggest that age-related extra-recruitment of neural resources can be beneficial for performance under taxing task conditions, such as when novel, weak, and complex rules have to be acquired.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (7): 1346–1364.
Published: 01 July 2009
Abstract
View article
PDF
Two of the most well studied and ecologically relevant memory paradigms are memory for pairs (“associations”) and ordered sequences (“serial lists”). Behavioral theories comprise two classes: those that use common mechanisms and those that use distinct mechanisms for study and retrieval of associations versus serial lists. We tested the common-mechanisms hypothesis by recording electroencephalographic activity related to successful study (“subsequent memory effect” [SME]) of pairs and short lists (triples) of nouns. Multivariate analysis identified four distributed patterns of brain activity: (1) right parietal activity throughout most of the study period that differentiated study of pairs from triples within subjects as well as exhibiting an SME that was significant for pairs but not for triples; (2) a left parietal and fronto-polar activity pattern that was reliable around 500 msec and later in the study trial, exhibiting an SME for pairs and a weaker, nonsignificant SME for triples; (3) a left frontal/right parietal topography in the middle of the study interval which covaried with speed and accuracy across subjects; and (4) a pattern resembling the late positive component preceded by an early potential which together covaried with accuracy in triples but slow response times for both pairs and triples. These patterns point to the relevance of three classic SME components (early, late positive, and slow components) from single-item memory to memory for structured information, but suggest that they reflect subsets of more complex spatio-temporal patterns. Our findings support common underlying mechanisms for study and recall of pairs and lists. However, existing models must be modified to account for differences in both the presence of certain study-relevant processes and in the relevance of these processes to performance measures for pairs versus serial lists.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (6): 1116–1126.
Published: 01 June 2009
Abstract
View article
PDF
Time processing may shape behavior in several ways, although the underlying neural correlates are still poorly understood. When preparatory intervals between stimuli vary randomly in a block, for instance, responses are faster as the interval gets longer. This effect, known as variable foreperiod (FP) effect, has been attributed to a process monitoring the conditional probability of stimulus occurrence as the interval increases. Previous evidence points to the right dorsolateral prefrontal cortex (DLPFC) as a possible node for this time-monitoring process. The present study addresses this hypothesis with functional magnetic resonance imaging (fMRI). Block-design fMRI was used on 14 young participants while they performed a visual discrimination task with fixed and variable preparatory intervals (FPs) of 1 and 3 sec. In the variable versus fixed FP contrast, the right DLPFC and a visual area were more activated in the subgroup of participants who showed a reliable variable FP effect than in another subgroup who did not show that effect. Only the activation in the right DLPFC was supported by a significant interaction between FP condition (variable vs. fixed) and group. This finding may reflect possible differences in the strategy adopted by the two subgroups of participants while performing the task. Although results suggest that many brain areas may be involved in preparation over time, the role of the right DLPFC is critical to observe the strategically mediated behavioral effects in the variable FP paradigm.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (11): 1815–1826.
Published: 01 November 2007
Abstract
View article
PDF
Unlike most other objects that are processed analytically, faces are processed configurally. This configural processing is reflected early in visual processing following face inversion and contrast reversal, as an increase in the N170 amplitude, a scalp-recorded event-related potential. Here, we show that these face-specific effects are mediated by the eye region. That is, they occurred only when the eyes were present, but not when eyes were removed from the face. The N170 recorded to inverted and negative faces likely reflects the processing of the eyes. We propose a neural model of face processing in which face- and eye-selective neurons situated in the superior temporal sulcus region of the human brain respond differently to the face configuration and to the eyes depending on the face context. This dynamic response modulation accounts for the N170 variations reported in the literature. The eyes may be central to what makes faces so special.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (2): 227–241.
Published: 01 February 2006
Abstract
View article
PDF
A number of theories have emerged to explain the well-studied changes in memory that occur with age. Many of these theories invoke mechanisms that have the potential to affect multiple cognitive domains, in addition to memory. Such mechanisms include alterations in attentional or inhibitory function, or dysfunction of specific brain areas, such as the frontal lobes. To gain insight into these mechanisms, we used functional magnetic resonance imaging to examine brain activity during encoding and recognition tasks in young, middle-aged, and older adults to identify correlations between age and brain activity across the various tasks. The goal was to see whether these correlations were task-specific or common across tasks, and to determine whether age differences emerged in a linear fashion over the adult years. Across all memory tasks, at both encoding and recognition, linear increases of activity with age were found in areas normally decreased during task performance (e.g., medial frontal and parietal regions), whereas activity in regions with task-related activation (e.g., dorsolateral prefrontal cortex) decreased with age. These results suggest that there is a gradual, age-related reduction in the ability to suspend non-task-related or “default-mode” activity and engage areas for carrying out memory tasks. Such an alteration in the balance between default-mode and task-related activity could account for increased vulnerability to distraction from irrelevant information, and thereby affect multiple cognitive domains.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (7): 1026–1042.
Published: 01 July 2005
Abstract
View article
PDF
The anterior cingulate (AC) cortex seems to be similarly engaged by attentional and memory processes. We tested the hypothesis that this common activation is best explained by changes in the regions interacting (functionally connected) with AC. Subjects were tested on two variants of a 2-back working memory task: a standard version with strong attentional demands, and a cued version that more strongly promoted memory retrieval. AC activation, measured with functional MRI, was found in both tasks, although more sustained in the standard condition. The regions functionally connected to the AC, and the relation of these activity patterns to memory performance, were completely different across tasks. In the standard task, the pattern related to a speed-accuracy tradeoff, whereas the connectivity pattern unique to the cued task related only to better accuracy. By virtue of these changing patterns of functional connectivity, the contribution of AC to attention-and memory-driven performance was similarly changed.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (9): 1633–1646.
Published: 01 November 2004
Abstract
View article
PDF
Autobiographical memory comprises episodic and semantic components mediated by dissociable states of consciousness, one promoting the experience of the self at a specific moment in the past, and the other involving self-knowledge that does not require “mental time travel.” These components can be difficult to dissociate using retrospective autobiographical stimuli collection. In this study, we manipulated the episodic/semantic distinction within prospectively collected autobiographical stimuli. Over several months, participants made recordings documenting specific episodes, repeated episodes, and world knowledge. These recordings were later played back to participants during scanning with functional MRI. The results indicated overlapping but distinct patterns of brain activity corresponding to episodic and semantic autobiographical memory. Both episodic and semantic autobiographical memory engaged the left anteromedial prefrontal cortex associated with self-reference, but the episodic condition did so to a greater degree. The episodic condition uniquely engaged the medial temporal, posterior cingulate, and diencephalic regions associated with remote memory recovery. Whereas the episodic condition engaged the right temporo-parietal cortex involved in reconstruction of spatial context and attentional orienting, the semantic condition engaged the left temporo-parietal and parieto-frontal systems involved in egocentric spatial processing and top-down attentional control. Episodic recollection was also associated with suppression of emotional paralimbic regions. These findings support a functional neuroanatomical dissociation between episodic and semantic autobiographical memory, providing concordance to amnesic syndromes with disproportionate impairment in one of these two forms of autobiographical memory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (5): 775–792.
Published: 01 September 2000
Abstract
View article
PDF
Divided attention (DA) disrupts episodic encoding, but has little effect on episodic retrieval. Furthermore, normal aging is associated with episodic memory impairments, and when young adults are made to encode information under DA conditions, their memory performance is reduced and resembles that of old adults working under full attention (FA) conditions. Together, these results suggest a common neurocognitive mechanism by which aging and DA during encoding disrupt memory performance. In the current study, we used PET to investigate younger and older adults' brain activity during encoding and retrieval under FA and DA conditions. In FA conditions, the old adults showed reduced activity in prefrontal regions that younger adults activated preferentially during encoding or retrieval, as well as increased activity in prefrontal regions young adults did not activate. These results indicate that prefrontal functional specificity of episodic memory is reduced by aging. During encoding, DA reduced memory performance, and reduced brain activity in left-prefrontal and medial-temporal lobe regions for both age groups, indicating that DA during encoding interferes with encoding processes that lead to better memory performance. During retrieval, memory performance and retrieval-related brain activity were relatively immune to DA for both age groups, suggesting that DA during retrieval does not interfere with the brain systems necessary for successful retrieval. Finally, left inferior prefrontal activity was reduced similarly by aging and by DA during encoding, suggesting that the behavioral correspondence between these effects is the result of a reduced ability to engage in elaborate encoding operations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (1): 163–173.
Published: 01 January 2000
Abstract
View article
PDF
Large-scale networks of brain regions are believed to mediate cognitive processes, including episodic memory. Analyses of regional differences in brain activity, measured by functional neuroimaging, have begun to identify putative components of these networks. To more fully characterize neurocognitive networks, however, it is necessary to use analytical methods that quantify neural network interactions. Here, we used positron emission tomography (PET) to measure brain activity during initial encoding and subsequent recognition of sentences and pictures. For each type of material, three recognition conditions were included which varied with respect to target density (0%, 50%, 100%). Analysis of large-scale activity patterns identified a collection of foci whose activity distinguished the processing of sentences vs. pictures. A second pattern, which showed strong prefrontal cortex involvement, distinguished the type of cognitive process (encoding or retrieval). For both pictures and sentences, the manipulation of target density was associated with minor activation changes. Instead, it was found to relate to systematic changes of functional connections between material-specific regions and several other brain regions, including medial temporal, right prefrontal and parietal regions. These findings provide evidence for large-scale neural interactions between material-specific and process-specific neural substrates of episodic encoding and retrieval.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1997) 9 (2): 254–265.
Published: 01 March 1997
Abstract
View article
PDF
The purpose of this study was to directly compare the brain regions involved in episodic-memory recall and recognition. Changes in regional cerebral blood flow were measured by positron emission tomography while young healthy test persons were either recognizing or recalling previously studied word pairs. Reading of previously nonstudied pairs served as a reference task for subtractive comparisons. Compared to reading, both recall and recognition were associated with higher blood flow (activation) at identical sites in the right prefrontal cortex (areas 47, 45, and 10) and the anterior cingulate. Compared to recognition, recall was associated with higher activation in the anterior cingulate, globus pallidus, thalamus, and cerebellum, suggesting that these components of the cerebello-frontal pathway play a role in recall processes that they do not in recognition. Compared to recall, recognition was associated with higher activation in the right inferior parietal cortex (areas 39, 40, and 19), suggesting a larger perceptual component in recognition than in recall. Contrary to the expectations based on lesion data, the activations of the frontal regions were indistinguishable in recall and recognition. This finding is consistent with the notion that frontal activations in explicit memory tasks are related to the general episodic retrieval mode or retrieval attempt, rather than to specific mechanisms of ecphory (recovery of stored information).