Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Anthony T. Herdman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Jennifer D. Ryan, Sandra N. Moses, Melanie L. Ostreicher, Timothy Bardouille, Anthony T. Herdman ...
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (6): 1030–1042.
Published: 01 June 2008
Abstract
View article
PDF
It is well known that previous perceptual experiences alter subsequent perception, but the details of the neural underpinnings of this general phenomenon are still sketchy. Here, we ask whether previous experiences with an item (such as seeing a person's face) leads to the alteration of the neural correlates related to processing of the item as such, or whether it creates additional associative connections between such substrates and those activated during prior experience. To address this question, we used magnetoencephalography (MEG) to identify neural changes accompanying subjects' viewing of unfamiliar versus famous faces and hearing the names of unfamiliar versus famous names. We were interested in the nature of the involvement of auditory brain regions in the viewing of faces, and in the involvement of visual regions in the hearing of names. Evoked responses from MEG recordings for the names and faces conditions were localized to auditory and visual cortices, respectively. Unsurprisingly, peak activation strength of evoked responses was larger for famous versus nonfamous names within the superior temporal gyrus (STG), and was similar for famous and nonfamous faces in the occipital cortex. More relevant to the issue of experience on perception, peak activation strength in the STG was larger for viewed famous versus nonfamous faces, and peak activation within the occipital cortex was larger for heard famous versus nonfamous names. Critically, these experience-related responses were present within 150–250 msec of stimulus onset. These findings support the hypothesis that prior experiences may influence processing of faces and names such that perception encompasses more than what is imparted on the senses.
Journal Articles
Spatio-temporal Brain Dynamics Underlying Saccade Execution, Suppression, and Error-related Feedback
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (3): 420–432.
Published: 01 March 2007
Abstract
View article
PDF
Human and nonhuman animal research has outlined the neural regions that support saccadic eye movements. The aim of the current work was to outline the sequence by which distinct neural regions come on-line to support goal-directed saccade execution and error-related feedback. To achieve this, we obtained behavioral responses via eye movement recordings and neural responses via magnetoencephalography (MEG), concurrently, while participants performed an antisaccade task. Neural responses were examined with respect to the onset of the saccadic eye movements. Frontal eye field and visual cortex activity distinguished subsequently successful goal-directed saccades from (correct and erroneous) reflexive saccades prior to the deployment of the eye movement. Activity in the same neural regions following the saccadic movement distinguished correct from incorrect saccadic responses. Error-related activity in the frontal eye fields preceded that from visual regions, suggesting a potential feedback network that may drive corrective eye movements. This work provides the first empirical demonstration of simultaneous remote eyetracking and MEG recording. The coupling of behavioral and neuroimaging technologies, used here to characterize dynamic brain networks underlying saccade execution and error-related feedback, demonstrates a novel within-paradigm converging evidence approach by which to outline the neural underpinnings of cognition.