Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Antje Heinrich
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (10): 2675–2689.
Published: 01 October 2011
FIGURES
| View All (6)
Abstract
View article
PDF
We investigate whether the neural correlates of the continuity illusion, as measured using fMRI, are modulated by attention. As we have shown previously, when two formants of a synthetic vowel are presented in an alternating pattern, the vowel can be identified if the gaps in each formant are filled with bursts of plausible masking noise, causing the illusory percept of a continuous vowel (“Illusion” condition). When the formant-to-noise ratio is increased so that noise no longer plausibly masks the formants, the formants are heard as interrupted (“Illusion Break” condition) and vowels are not identifiable. A region of the left middle temporal gyrus (MTG) is sensitive both to intact synthetic vowels (two formants present simultaneously) and to Illusion stimuli, compared to Illusion Break stimuli. Here, we compared these conditions in the presence and absence of attention. We examined fMRI signal for different sound types under three attentional conditions: full attention to the vowels; attention to a visual distracter; or attention to an auditory distracter. Crucially, although a robust main effect of attentional state was observed in many regions, the effect of attention did not differ systematically for the illusory vowels compared to either intact vowels or to the Illusion Break stimuli in the left STG/MTG vowel-sensitive region. This result suggests that illusory continuity of vowels is an obligatory perceptual process, and operates independently of attentional state. An additional finding was that the sensitivity of primary auditory cortex to the number of sound onsets in the stimulus was modulated by attention.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (10): 1737–1752.
Published: 01 October 2008
Abstract
View article
PDF
We used functional magnetic resonance imaging to study the neural processing of vowels whose perception depends on the continuity illusion. Participants heard sequences of two-formant vowels under a number of listening conditions. In the “vowel conditions,” both formants were always present simultaneously and the stimuli were perceived as speech-like. Contrasted with a range of nonspeech sounds, these vowels elicited activity in the posterior middle temporal gyrus (MTG) and superior temporal sulcus (STS). When the two formants alternated in time, the “speech-likeness” of the sounds was reduced. It could be partially restored by filling the silent gaps in each formant with bands of noise (the “Illusion” condition) because the noise induced an illusion of continuity in each formant region, causing the two formants to be perceived as simultaneous. However, this manipulation was only effective at low formant-to-noise ratios (FNRs). When the FNR was increased, the illusion broke down (the “illusion-break” condition). Activation in vowel-sensitive regions of the MTG was greater in the illusion than in the illusion-break condition, consistent with the perception of Illusion stimuli as vowels. Activity in Heschl's gyri (HG), the approximate location of the primary auditory cortex, showed the opposite pattern, and may depend instead on the number of perceptual onsets in a sound. Our results demonstrate that speech-sensitive regions of the MTG are sensitive not to the physical characteristics of the stimulus but to the perception of the stimulus as speech, and also provide an anatomically distinct, objective physiological correlate of the continuity illusion in human listeners.