Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Antonio Ulloa
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (11): 1860–1876.
Published: 01 November 2017
FIGURES
| View All (12)
Abstract
View article
PDF
Many cognitive and computational models have been proposed to help understand working memory. In this article, we present a simulation study of cortical processing of visual objects during several working memory tasks using an extended version of a previously constructed large-scale neural model [Tagamets, M. A., & Horwitz, B. Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cerebral Cortex, 8, 310–320, 1998]. The original model consisted of arrays of Wilson–Cowan type of neuronal populations representing primary and secondary visual cortices, inferotemporal (IT) cortex, and pFC. We added a module representing entorhinal cortex, which functions as a gating module. We successfully implemented multiple working memory tasks using the same model and produced neuronal patterns in visual cortex, IT cortex, and pFC that match experimental findings. These working memory tasks can include distractor stimuli or can require that multiple items be retained in mind during a delay period (Sternberg's task). Besides electrophysiology data and behavioral data, we also generated fMRI BOLD time series from our simulation. Our results support the involvement of IT cortex in working memory maintenance and suggest the cortical architecture underlying the neural mechanisms mediating particular working memory tasks. Furthermore, we noticed that, during simulations of memorizing a list of objects, the first and last items in the sequence were recalled best, which may implicate the neural mechanism behind this important psychological effect (i.e., the primacy and recency effect).
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (8): 1275–1292.
Published: 01 August 2005
Abstract
View article
PDF
In this study, we investigated one type of auditory perceptual grouping phenomena—the auditory continuity illusion (also called temporal induction). We employed a previously developed, neurobiologically realistic, large-scale neural network model of the auditory processing pathway in the cortex, ranging from the primary auditory cortex to the prefrontal cortex, and simulated temporal induction without changing any model parameters. The model processes tonal contour stimuli, composed of combinations of upward and downward FM sweeps and tones, in a delayed match-to-sample task. The local electrical activities of the neuronal units of the model simulated accurately the experimentally observed electrophysiological data, where available, and the model's simulated BOLD-fMRI data were quantitatively matched with experimental fMRI data. In the present simulations, intact stimuli were matched with fragmented versions (i.e., with inserted silent gaps). The ability of the model to match fragmented stimuli declined as the duration of the gaps increased. However, when simulated broadband noise was inserted into these gaps, the matching response was restored, indicating that a continuous stimulus was perceived. The electrical activities of the neuronal units of the model agreed with electrophysiological data, and the behavioral activity of the model matched human behavioral data. In the model, the predominant mechanism implementing temporal induction is the divergence of the feedforward connections along the auditory processing pathway in the temporal cortex. These simulation results not only attest to the robustness of the model, but further predict the primary role of the anatomical connectivity of the auditory processing areas in mediating the continuity illusion.