Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-7 of 7
Arne D. Ekstrom
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience 1–13.
Published: 09 November 2024
Abstract
View article
PDF
Prior studies examining the neural mechanisms underlying retrieval success and precision have yielded inconsistent results. Here, the neural correlates of success and precision were examined with a memory task that assessed precision for spatial location. A sample of healthy young adults underwent functional magnetic resonance imaging scanning during a single study–test cycle. At study, participants viewed a series of object images, each placed at a randomly selected location on an imaginary circle. At test, studied images were intermixed with new images and presented to the participants. The requirement was to move a cursor to the location of the studied image, guessing if necessary. Participants then signaled whether the presented image had been studied. Memory precision was quantified as the angular difference between the studied location and the location selected by the participant. A precision effect was evident in the left angular gyrus, where BOLD activity covaried with location accuracy. In addition, multivoxel pattern analysis revealed a significant item-level reinstatement effect in the angular gyrus for high-precision trials. There was no evidence of a retrieval success effect in this region. BOLD activity in the hippocampus was insensitive to both success and precision. These findings are partially consistent with prior evidence that success and precision are dissociable features of memory retrieval.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (12): 2002–2013.
Published: 01 December 2023
FIGURES
Abstract
View article
PDF
Neuropsychological research suggests that “experience-near” semantic memory, meaning knowledge attached to a spatiotemporal or event context, is commonly impaired in individuals who have medial temporal lobe amnesia. It is not known if this impairment extends to remotely acquired experience-near knowledge, which is a question relevant to understanding hippocampal/medial temporal lobe functioning. In the present study, we administered a novel semantic memory task designed to target knowledge associated with remote, “dormant” concepts, in addition to knowledge associated with active concepts, to four individuals with medial temporal lobe amnesia and eight matched controls. We found that the individuals with medial temporal lobe amnesia generated significantly fewer experience-near semantic memories for both remote concepts and active concepts. In comparison, the generation of abstract or “experience-far” knowledge was largely spared in the individuals with medial temporal lobe amnesia, regardless of whether the targets for retrieval were remote or active concepts. We interpret these findings as evidence that the medial temporal lobes may have a sustained role in the retrieval of semantic memories associated with spatiotemporal and event contexts, which are cognitive features often ascribed to episodic memory. These results align with recent theoretical models proposing that the hippocampus/medial temporal lobes support cognitive processes that are involved in, but not exclusive to, episodic memory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (2): 167–179.
Published: 01 February 2021
FIGURES
Abstract
View article
PDF
Moving our body through space is fundamental to human navigation; however, technical and physical limitations have hindered our ability to study the role of these body-based cues experimentally. We recently designed an experiment using novel immersive virtual-reality technology, which allowed us to tightly control the availability of body-based cues to determine how these cues influence human spatial memory [Huffman, D. J., & Ekstrom, A. D. A modality-independent network underlies the retrieval of large-scale spatial environments in the human brain. Neuron , 104 , 611–622, 2019]. Our analysis of behavior and fMRI data revealed a similar pattern of results across a range of body-based cues conditions, thus suggesting that participants likely relied primarily on vision to form and retrieve abstract, holistic representations of the large-scale environments in our experiment. We ended our paper by discussing a number of caveats and future directions for research on the role of body-based cues in human spatial memory. Here, we reiterate and expand on this discussion, and we use a commentary in this issue by A. Steel, C. E. Robertson, and J. S. Taube (Current promises and limitations of combined virtual reality and functional magnetic resonance imaging research in humans: A commentary on Huffman and Ekstrom (2019). Journal of Cognitive Neuroscience , 2020) as a helpful discussion point regarding some of the questions that we think will be the most interesting in the coming years. We highlight the exciting possibility of taking a more naturalistic approach to study the behavior, cognition, and neuroscience of navigation. Moreover, we share the hope that researchers who study navigation in humans and nonhuman animals will synergize to provide more rapid advancements in our understanding of cognition and the brain.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (4): 739–754.
Published: 01 April 2017
FIGURES
| View All (4)
Abstract
View article
PDF
Numerous studies indicate the importance of the hippocampus to temporal order retrieval. However, behavioral studies suggest that there are different ways to retrieve temporal order information from encoded sequences, one involving an associative strategy (retrieving associations using neighboring items in a list) and another involving a recency strategy (determining which of two items came first). It remains unresolved, however, whether both strategies recruit the hippocampus or only associative strategies, consistent with the hippocampus's role in relational processing. To address this, we developed a paradigm in which we dissociated associative versus recency-based retrieval, involving the same stimulus presentation during retrieval. Associative retrieval involved an increase in RT (and decrease in performance) with greater distances between intervals, consistent with the need to retrieve intervening associations. Recency-based retrieval involved an increase in RT (and decrease in performance) with shorter distances between intervals, suggesting the use of a strength-based coding mechanism to retrieve information. We employed fMRI to determine the neural basis of the different strategies. Both strategies showed significant levels of hippocampal activation and connectivity that did not differ between tasks. In contrast, both univariate and connectivity pattern analyses revealed differences in extrahippocampal areas such as parietal and frontal cortices. A covariate analysis suggested that differences could not be explained by task difficulty alone. Together, these findings suggest that the hippocampus plays a role in both forms of temporal order retrieval, with neocortical networks mediating the different cognitive demands for associative versus recency-based temporal order retrieval.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (6): 1194–1206.
Published: 01 June 2015
FIGURES
| View All (11)
Abstract
View article
PDF
Examining the function of individual human hippocampal subfields remains challenging because of their small sizes and convoluted structures. Previous human fMRI studies at 3 T have successfully detected differences in activation between hippocampal cornu ammonis (CA) field CA1, combined CA2, CA3, and dentate gyrus (DG) region (CA23DG), and the subiculum during associative memory tasks. In this study, we investigated hippocampal subfield activity in healthy participants using an associative memory paradigm during high-resolution fMRI scanning at 7 T. We were able to localize fMRI activity to anterior CA2 and CA3 during learning and to the posterior CA2 field, the CA1, and the posterior subiculum during retrieval of novel associations. These results provide insight into more specific human hippocampal subfield functions underlying learning and memory and a unique opportunity for future investigations of hippocampal subfield function in healthy individuals as well as those suffering from neurodegenerative diseases.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (3): 546–559.
Published: 01 March 2015
FIGURES
| View All (6)
Abstract
View article
PDF
The unique circuitry of the hippocampus is thought to support the encoding and retrieval of context-rich episodic memories. Given the neuroanatomical differences between the hippocampal subfields, determining their functional roles during representation of contextual features in humans is an important yet unaddressed research goal. Prior studies suggest that, during the acquisition of information from the environment, the dentate gyrus (DG) and CA3 subfields rapidly differentiate competing contextual representations, whereas CA1, situated downstream from CA3/DG, is believed to process input from both CA3 and neocortical areas via the temporoammonic pathway. To further explore the functionality of these roles, we used high-resolution fMRI to investigate multivariate response patterns within CA3/DG and CA1 during the processing of spatial context. While undergoing functional imaging, participants viewed videos of virtual environments and were asked to discriminate between similar yet geometrically distinct cities. We manipulated a single contextual feature by systematically morphing the city configurations from one common geometric shape to another, resulting in four cities—two distinctively shaped cities and two intermediate “morphed” cities. Pattern similarity within CA3/DG scaled with geometric changes to the environment. In contrast, CA1 pattern similarity, as well as interregional pattern similarity between CA1 and parahippocampal cortex, increased for the regularly shaped configurations compared with the morphs. These results highlight different roles for subfields CA3/DG and CA1 in memory and advance our understanding of how subcomponents of the human hippocampal circuit represent contextual features of memories.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (5): 824–836.
Published: 01 May 2010
FIGURES
Abstract
View article
PDF
During spatial navigation, lesion and functional imaging studies suggest that the right hemisphere has a unique functional role. However, studies of direct human brain recordings have not reported interhemisphere differences in navigation-related oscillatory activity. We investigated this apparent discrepancy using intracranial electroencephalographic recordings from 24 neurosurgical patients playing a virtual taxi driver game. When patients were virtually moving in the game, brain oscillations at various frequencies increased in amplitude compared with periods of virtual stillness. Using log-linear analysis, we analyzed the region and frequency specificities of this pattern and found that neocortical movement-related gamma oscillations (34–54 Hz) were significantly lateralized to the right hemisphere, especially in posterior neocortex. We also observed a similar right lateralization of gamma oscillations related to searching for objects at unknown virtual locations. Thus, our results indicate that gamma oscillations in the right neocortex play a special role in human spatial navigation.