Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Arthur F. Kramer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (2): 234–245.
Published: 01 February 2015
FIGURES
Abstract
View article
PDF
The hippocampus has been implicated in a diverse set of cognitive domains and paradigms, including cognitive mapping, long-term memory, and relational memory, at long or short study–test intervals. Despite the diversity of these areas, their association with the hippocampus may rely on an underlying commonality of relational memory processing shared among them. Most studies assess hippocampal memory within just one of these domains, making it difficult to know whether these paradigms all assess a similar underlying cognitive construct tied to the hippocampus. Here we directly tested the commonality among disparate tasks linked to the hippocampus by using PCA on performance from a battery of 12 cognitive tasks that included two traditional, long-delay neuropsychological tests of memory and two laboratory tests of relational memory (one of spatial and one of visual object associations) that imposed only short delays between study and test. Also included were different tests of memory, executive function, and processing speed. Structural MRI scans from a subset of participants were used to quantify the volume of the hippocampus and other subcortical regions. Results revealed that the 12 tasks clustered into four components; critically, the two neuropsychological tasks of long-term verbal memory and the two laboratory tests of relational memory loaded onto one component. Moreover, bilateral hippocampal volume was strongly tied to performance on this component. Taken together, these data emphasize the important contribution the hippocampus makes to relational memory processing across a broad range of tasks that span multiple domains.
Journal Articles
Cardiorespiratory Fitness and the Flexible Modulation of Cognitive Control in Preadolescent Children
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (6): 1332–1345.
Published: 01 June 2011
FIGURES
Abstract
View article
PDF
The influence of cardiorespiratory fitness on the modulation of cognitive control was assessed in preadolescent children separated into higher- and lower-fit groups. Participants completed compatible and incompatible stimulus–response conditions of a modified flanker task, consisting of congruent and incongruent arrays, while ERPs and task performance were concurrently measured. Findings revealed decreased response accuracy for lower- relative to higher-fit participants with a selectively larger deficit in response to the incompatible stimulus–response condition, requiring the greatest amount of cognitive control. In contrast, higher-fit participants maintained response accuracy across stimulus–response compatibility conditions. Neuroelectric measures indicated that higher-fit, relative to lower-fit, participants exhibited global increases in P3 amplitude and shorter P3 latency, as well as greater modulation of P3 amplitude between the compatible and incompatible stimulus–response conditions. Similarly, higher-fit participants exhibited smaller error-related negativity (ERN) amplitudes in the compatible condition, and greater modulation of the ERN between the compatible and incompatible conditions, relative to lower-fit participants who exhibited large ERN amplitudes across both conditions. These findings suggest that lower-fit children may have more difficulty than higher-fit children in the flexible modulation of cognitive control processes to meet task demands.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (12): 2285–2297.
Published: 01 December 2008
Abstract
View article
PDF
Previous research has shown that task-irrelevant onsets trigger an eye movement in their direction. Such oculomotor capture is often impervious to conscious awareness. The present study used event-related brain potentials to examine how such oculomotor errors are detected, evaluated, and compensated for and whether awareness of an error played a role at any of these stages of processing. The results show that the early processes of error detection and correction (as represented by the error-related negativity and the parietal N1) are not directly affected by subjective awareness of making an error. Instead, they seem to be modulated by the degree of temporal overlap between the programming of the correct and erroneous saccade. We found that only a later component (the error-related positivity [Pe]) is modulated by awareness of making an erroneous eye movement. We propose that awareness of oculomotor capture primarily depends on this later process.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (6): 988–1000.
Published: 01 November 2000
Abstract
View article
PDF
The brain's attentional system identifies and selects information that is task-relevant while ignoring information that is task-irrelevant. In two experiments using functional magnetic resonance imaging, we examined the effects of varying task-relevant information compared to task-irrelevant information. In the first experiment, we compared patterns of activation as attentional demands were increased for two Stroop tasks that differed in the task-relevant information, but not the task-irrelevant information: a color-word task and a spatial-word task. Distinct subdivisions of dorsolateral prefrontal cortex and the precuneus became activated for each task, indicating differential sensitivity of these regions to task-relevant information (e.g., spatial information vs. color). In the second experiment, we compared patterns of activation with increased attentional demands for two Stroop tasks that differed in task-irrelevant information, but not task-relevant information: a color-word task and color-object task. Little differentiation in activation for dorsolateral prefrontal and precuneus regions was observed, indicating a relative insensitivity of these regions to task-irrelevant information. However, we observed a differentiation in the pattern of activity for posterior regions. There were unique areas of activation in parietal regions for the color-word task and in occipito-temporal regions for the color-object task. No increase in activation was observed in regions responsible for processing the perceptual attribute of color. The results of this second experiment indicate that attentional selection in tasks such as the Stroop task, which contain multiple potential sources of relevant information (e.g., the word vs. its ink color), acts more by modulating the processing of task-irrelevant information than by modulating processing of task-relevant information.