Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Barry E. Stein
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (8): 1240–1255.
Published: 15 November 2002
Abstract
View article
PDF
It had previously been shown that influences from two cortical areas, the anterior ectosylvian sulcus (AES) and the rostral lateral suprasylvian sulcus (rLS), play critical roles in rendering superior colliculus (SC) neurons capable of synthesizing their cross-modal inputs. The present studies examined the consequences of selectively eliminating these cortical influences on SC-mediated orientation responses to cross-modal stimuli. Cats were trained to orient to a low-intensity modality-specific cue (visual) in the presence or absence of a neutral cue from another modality (auditory). The visual target could appear at various locations within 45° of the midline, and the stimulus effectiveness was varied to yield an average of correct orientation responses of approximately 45%. Response enhancement and depression were observed when the auditory cue was coupled with the target stimulus: A substantially enhanced probability in correct responses was evident when the cross-modal stimuli were spatially coincident, and a substantially decreased response probability was obtained when the stimuli were spatially disparate. Cryogenic blockade of either AES or rLS disrupted these behavioral effects, thereby eliminating the enhanced performance in response to spatially coincident cross-modal cues and degrading the depressed performance in response to spatially disparate cross-modal cues. These disruptive effects on targets contralateral to the deactivated cortex were restricted to multisensory interactive processes. Orientation to modality-specific targets was unchanged. Furthermore, the pattern of orientation errors was unaffected by cortical deactivation. These data bear striking similarities to the effects of AES and rLS deactivation on multisensory integration at the level of individual SC neurons. Presumably, eliminating the critical influences from AES or rLS cortex disrupts SC multisensory synthesis that, in turn, disables SC-mediated multisensory orientation behaviors.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (3): 420–429.
Published: 01 April 2002
Abstract
View article
PDF
Visual and auditory cortices traditionally have been considered to be “modality-specific.” Thus, their activity has been thought to be unchanged by information in other sensory modalities. However, using functional magnetic resonance imaging (fMRI), the present experiments revealed that ongoing activity in the visual cortex could be modulated by auditory information and ongoing activity in the auditory cortex could be modulated by visual information. In both cases, this cross-modal modulation of activity took the form of deactivation. Yet, the deactivation response was not evident in either cortical area during the paired presentation of visual and auditory stimuli. These data suggest that cross-modal inhibitory processes operate within traditional modality-specific cortices and that these processes can be switched on or off in different circumstances.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1996) 8 (6): 497–506.
Published: 01 November 1996
Abstract
View article
PDF
Judgments of the intensity of a stimulus are dependent on the level of central nervous system activity it generates. Generally, it is assumed that such judgments are based on activity along modality-specific pathways. Thus, visual intensity judgments would be based on unimodal visual activity. However, many neurons do not fit neatly within modality-specific categories, but can be influenced by more than one sensory modality. Often the “multisensory” effect is quite pronounced. If these multisensory neurons participate in such fundamental functions as perceived intensity, the presence of a nonvisual (i.e., auditory) cue may have a significant effect on the perceived intensity of a visual cue. The results of the present study were consistent with such a hypothesis. A brief, broad-band auditory stimulus was found to significantly enhance the perceived intensity of an LED. The effect was most pronounced at the lowest visual intensities, and was evident regardless of the location of the auditory cue. However, it was present only at the location of visual fixation. Yet, despite the significant influence of the auditory cue, and its differential effect at different visual intensities, a power function that maintains the proportionality among perceived visual intensities was retained.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1992) 4 (1): 1–14.
Published: 01 January 1992
Abstract
View article
PDF
During the last two decades there has been a proliferation of studies evaluating the psychophysical and neural attributes of heat-induced pain. Experiments using radiant and contact heat-induced pain have produced different observations thereby broadening our appreciation of the importance of acknowledging how a noxious heat stimulus is delivered; moreover manipulations of stimulus parameters have now provided a foundation for understanding the underlying neural mechanisms of heat-induced pain and their biological significance. The psychophysical attributes of heat-induced pain include highly reliable thresholds for most body regions, minimal adaptation to maintained noxious stimuli, an exquisite sensitivity to small changes in stimulus intensity, slow temporal summation for some types of heat-induced pain (i.e., second pain) but not for others (i.e., first pain), spatial summation---especially for suprathreshold noxious temperatures---and the perceived spread of pain well beyond the actual body area stimulated (i.e., radiation). The present body of information indicates that the pain system is optimally adapted for conveying precise information about intensity, and is less concerned with other stimulus features, such as spatial patterns or boundaries.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1989) 1 (1): 12–24.
Published: 01 January 1989
Abstract
View article
PDF
Physiological studies have demonstrated that inputs from different sensory modalities converge on, and are integrated by, individual superior colliculus neurons and that this integration is governed by specific spatial rules. The present experiments were an attempt to relate these neural processes to overt behavior by determining if behaviors believed to involve the circuitry of the superior colliculus would show similar multisensory dependencies and be subject to the same rules of integration. The neurophysiological-behavioral parallels proved to be striking. The effectiveness of a stimulus of one modality in eliciting attentive and orientation behaviors was dramatically affected by the presence of a stimulus from another modality in each of the three behavioral paradigms used here. Animals trained to approach a low intensity visual cue had their performance significantly enhanced when a brief, low intensity auditory stimulus was presented at the same location as the visual cue, but their performance was significantly depressed when the auditory stimulus was disparate to it. These effects were independent of the animals' experience with the modifying (i.e. auditory) stimulus and exceeded what might have been predicted statistically based on the animals' performance with each single-modality cue. The multiplicative nature of these multisensory interactions and their dependence on the relative positions and intensities of the two stimuli were all very similar to those observed physiologically for single cells. The few differences that were observed appeared to reflect the fact that understanding integration at the level of the single cell requires reference to the individual cell's multisensory receptive field properties, while at the behavioral level populations of receptive fields must be evaluated. These data illustrate that the rules governing multisensory integration at the level of the single cell also predict responses to these stimuli in the intact behaving organism.