Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Benjamin Baird
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (10): 1766–1777.
Published: 01 October 2017
FIGURES
Abstract
View article
PDF
Thoughts occur during wake as well as during dreaming sleep. Using experience sampling combined with high-density EEG, we investigated the phenomenal qualities and neural correlates of spontaneously occurring thoughts across wakefulness, non-rapid eye movement (NREM) sleep, and REM sleep. Across all states, thoughts were associated with activation of a region of the midcingulate cortex. Thoughts during wakefulness additionally involved a medial prefrontal region, which was associated with metacognitive thoughts during wake. Phenomenologically, waking thoughts had more metacognitive content than thoughts during both NREM and REM sleep, whereas thoughts during REM sleep had a more social content. Together, these results point to a core neural substrate for thoughts, regardless of behavioral state, within the midcingulate cortex, and suggest that medial prefrontal regions may contribute to metacognitive content in waking thoughts.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (3): 440–452.
Published: 01 March 2015
FIGURES
| View All (4)
Abstract
View article
PDF
The neural mechanisms that mediate metacognitive ability (the capacity to accurately reflect on one's own cognition and experience) remain poorly understood. An important question is whether metacognitive capacity is a domain-general skill supported by a core neuroanatomical substrate or whether regionally specific neural structures underlie accurate reflection in different cognitive domains. Providing preliminary support for the latter possibility, recent findings have shown that individual differences in metacognitive ability in the domains of memory and perception are related to variation in distinct gray matter volume and resting-state functional connectivity. The current investigation sought to build on these findings by evaluating how metacognitive ability in these domains is related to variation in white matter microstructure. We quantified metacognitive ability across memory and perception domains and used diffusion spectrum imaging to examine the relation between high-resolution measurements of white matter microstructure and individual differences in metacognitive accuracy in each domain. We found that metacognitive accuracy for perceptual decisions and memory were uncorrelated across individuals and that metacognitive accuracy in each domain was related to variation in white matter microstructure in distinct brain areas. Metacognitive accuracy for perceptual decisions was associated with increased diffusion anisotropy in white matter underlying the ACC, whereas metacognitive accuracy for memory retrieval was associated with increased diffusion anisotropy in the white matter extending into the inferior parietal lobule. Together, these results extend previous findings linking metacognitive ability in the domains of perception and memory to variation in distinct brain structures and connections.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (11): 2596–2607.
Published: 01 November 2014
FIGURES
| View All (4)
Abstract
View article
PDF
The mind flows in a “stream of consciousness,” which often neglects immediate sensory input in favor of focusing on intrinsic, self-generated thoughts or images. Although considerable research has documented the disruptive influences of task-unrelated thought for perceptual processing and task performance, the brain dynamics associated with these phenomena are not well understood. Here we investigate the possibility, suggested by several convergent lines of research, that task-unrelated thought is associated with a reduction in the trial-to-trial phase consistency of the oscillatory neural signal in response to perceptual input. Using an experience sampling paradigm coupled with continuous high-density electroencephalography, we observed that task-unrelated thought was associated with a reduction of the P1 ERP, replicating prior observations that mind-wandering is accompanied by a reduction of the brain-evoked response to sensory input. Time–frequency analysis of the oscillatory neural response revealed a decrease in theta-band cortical phase-locking, which peaked over parietal scalp regions. Furthermore, we observed that task-unrelated thought impacted the oscillatory mode of the brain during the initiation of a task-relevant action, such that more cortical processing was required to meet task demands. Together, these findings document that the attenuation of perceptual processing that occurs during task-unrelated thought is associated with a reduction in the temporal fidelity with which the brain responds to a stimulus and suggest that increased neural processing may be required to recouple attention to a task. More generally, these data provide novel confirmatory evidence for the mechanisms through which attentional states facilitate the neural processing of sensory input.