Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Benjamin D. Zinszer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (11): 1749–1759.
Published: 01 November 2016
FIGURES
Abstract
View article
PDF
Two sets of items can share the same underlying conceptual structure, while appearing unrelated at a surface level. Humans excel at recognizing and using alignments between such underlying structures in many domains of cognition, most notably in analogical reasoning. Here we show that structural alignment reveals how different people's neural representations of word meaning are preserved across different languages, such that patterns of brain activation can be used to translate words from one language to another. Groups of Chinese and English speakers underwent fMRI scanning while reading words in their respective native languages. Simply by aligning structures representing the two groups' neural semantic spaces, we successfully infer all seven Chinese–English word translations. Beyond language translation, conceptual structural alignment underlies many aspects of high-level cognition, and this work opens the door to deriving many such alignments directly from neural representational content.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (10): 1484–1500.
Published: 01 October 2016
FIGURES
| View All (7)
Abstract
View article
PDF
Successful knowledge acquisition requires a cognitive system that is both sensitive to statistical information and able to distinguish among multiple structures (i.e., to detect pattern shifts and form distinct representations). Extensive behavioral evidence has highlighted the importance of cues to structural change, demonstrating how, without them, learners fail to detect pattern shifts and are biased in favor of early experience. Here, we seek a neural account of the mechanism underpinning this primacy effect in learning. During fMRI scanning, adult participants were presented with two artificial languages: a familiar language (L1) on which they had been pretrained followed by a novel language (L2). The languages were composed of the same syllable inventory organized according to unique statistical structures. In the absence of cues to the transition between languages, posttest familiarity judgments revealed that learners on average more accurately segmented words from the familiar language compared with the novel one. Univariate activation and functional connectivity analyses showed that participants with the strongest learning of L1 had decreased recruitment of fronto-subcortical and posterior parietal regions, in addition to a dissociation between downstream regions and early auditory cortex. Participants with a strong new language learning capacity (i.e., higher L2 scores) showed the opposite trend. Thus, we suggest that a bias toward neural efficiency, particularly as manifested by decreased sampling from the environment, accounts for the primacy effect in learning. Potential implications of this hypothesis are discussed, including the possibility that “inefficient” learning systems may be more sensitive to structural changes in a dynamic environment.