Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Benjamin Rich Zendel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (5): 1044–1059.
Published: 01 May 2015
FIGURES
| View All (6)
Abstract
View article
PDF
Musicians have enhanced auditory processing abilities. In some studies, these abilities are paralleled by an improved understanding of speech in noisy environments, partially due to more robust encoding of speech signals in noise at the level of the brainstem. Little is known about the impact of musicianship on attention-dependent cortical activity related to lexical access during a speech-in-noise task. To address this issue, we presented musicians and nonmusicians with single words mixed with three levels of background noise, across two conditions, while monitoring electrical brain activity. In the active condition, listeners repeated the words aloud, and in the passive condition, they ignored the words and watched a silent film. When background noise was most intense, musicians repeated more words correctly compared with nonmusicians. Auditory evoked responses were attenuated and delayed with the addition of background noise. In musicians, P1 amplitude was marginally enhanced during active listening and was related to task performance in the most difficult listening condition. By comparing ERPs from the active and passive conditions, we isolated an N400 related to lexical access. The amplitude of the N400 was not influenced by the level of background noise in musicians, whereas N400 amplitude increased with the level of background noise in nonmusicians. In nonmusicians, the increase in N400 amplitude was related to a reduction in task performance. In musicians only, there was a rightward shift of the sources contributing to the N400 as the level of background noise increased. This pattern of results supports the hypothesis that encoding of speech in noise is more robust in musicians and suggests that this facilitates lexical access. Moreover, the shift in sources suggests that musicians, to a greater extent than nonmusicians, may increasingly rely on acoustic cues to understand speech in noise.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (4): 503–516.
Published: 01 April 2013
FIGURES
| View All (6)
Abstract
View article
PDF
The ability to separate concurrent sounds based on periodicity cues is critical for parsing complex auditory scenes. This ability is enhanced in young adult musicians and reduced in older adults. Here, we investigated the impact of lifelong musicianship on concurrent sound segregation and perception using scalp-recorded ERPs. Older and younger musicians and nonmusicians were presented with periodic harmonic complexes where the second harmonic could be tuned or mistuned by 1–16% of its original value. The likelihood of perceiving two simultaneous sounds increased with mistuning, and musicians, both older and younger, were more likely to detect and report hearing two sounds when the second harmonic was mistuned at or above 2%. The perception of a mistuned harmonic as a separate sound was paralleled by an object-related negativity that was larger and earlier in younger musicians compared with the other three groups. When listeners made a judgment about the harmonic stimuli, the perception of the mistuned harmonic as a separate sound was paralleled by a positive wave at about 400 msec poststimulus (P400), which was enhanced in both older and younger musicians. These findings suggest attention-dependent processing of a mistuned harmonic is enhanced in older musicians and provides further evidence that age-related decline in hearing abilities are mitigated by musical training.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (8): 1488–1498.
Published: 01 August 2009
Abstract
View article
PDF
The ability to segregate simultaneously occurring sounds is fundamental to auditory perception. Many studies have shown that musicians have enhanced auditory perceptual abilities; however, the impact of musical expertise on segregating concurrently occurring sounds is unknown. Therefore, we examined whether long-term musical training can improve listeners' ability to segregate sounds that occur simultaneously. Participants were presented with complex sounds that had either all harmonics in tune or the second harmonic mistuned by 1%, 2%, 4%, 8%, or 16% of its original value. The likelihood of hearing two sounds simultaneously increased with mistuning, and this effect was greater in musicians than nonmusicians. The segregation of the mistuned harmonic from the harmonic series was paralleled by an object-related negativity that was larger and peaked earlier in musicians. It also coincided with a late positive wave referred to as the P400 whose amplitude was larger in musicians than in nonmusicians. The behavioral and electrophysiological effects of musical expertise were specific to processing the mistuned harmonic as the N1, the N1c, and the P2 waves elicited by the tuned stimuli were comparable in both musicians and nonmusicians. These results demonstrate that listeners' ability to segregate concurrent sounds based on harmonicity is modulated by experience and provides a basis for further studies assessing the potential rehabilitative effects of musical training on solving complex scene analysis problems illustrated by the cocktail party example.