Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Bernhard Pastötter
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (8): 1581–1594.
Published: 01 July 2021
FIGURES
| View All (4)
Abstract
View article
PDF
Human action control relies on event files, that is, short-term stimulus–response bindings that result from the integration of perception and action. The present EEG study examined oscillatory brain activities related to the integration and disintegration of event files in the distractor–response binding (DRB) task, which relies on a sequential prime–probe structure with orthogonal variation of distractor and response relations between prime and probe. Behavioral results indicated a DRB effect in RTs, which was moderated by the duration of the response-stimulus interval (RSI) between prime response and probe stimulus onset. Indeed, a DRB effect was observed for a short RSI of 500 msec but not for a longer RSI of 2000 msec, indicating disintegration of event files over time. EEG results revealed a positive correlation between individual DRB in the RSI-2000 condition and postmovement beta synchronization after both prime and probe responses. Beamformer analysis localized this correlation effect to the middle occipital gyrus, which also showed highest coherency with precentral and inferior parietal brain regions. Together, these findings suggest that postmovement beta synchronization is a marker of event file disintegration, with the left middle occipital gyrus being a hub region for stimulus–response bindings in the visual DRB task.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (7): 985–998.
Published: 01 July 2018
FIGURES
| View All (6)
Abstract
View article
PDF
Understanding the neural processes that maintain goal-directed behavior is a major challenge for the study of attentional control. Although much of the previous work on the issue has focused on prefrontal brain areas, little is known about the contribution of sensory brain processes to the regulation of attentional control. The present EEG study examined brain oscillatory activities invoked in the processing of response conflict in a lateralized Eriksen single-flanker task, in which target letters were presented at fixation and single distractor letters were presented either left or right to the targets. Distractors were response compatible, response incompatible, or neutral in relation to the responses associated with the targets. The behavioral results showed that responses to targets in incompatible trials were slower and more error prone than responses in compatible trials. The electrophysiological results revealed an early sensory lateralization effect in (both evoked and induced) theta power (3–6 Hz) that was more pronounced in incompatible than compatible trials. The sensory lateralization effect preceded in time a midfrontal conflict effect that was indexed by an increase of (induced) theta power (6–9 Hz) in incompatible compared with compatible trials. The findings indicate an early modulation of sensory distractor processing induced by response conflict. Theoretical implications of the findings, in particular with respect to the theory of event coding and theories relating to stimulus–response binding [Henson, R. N., Eckstein, D., Waszak, F., Frings, C., & Horner, A. Stimulus-response bindings in priming. Trends in Cognitive Sciences, 18, 376–384, 2014; Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878, 2001], are discussed.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (12): 2167–2178.
Published: 01 December 2013
FIGURES
| View All (4)
Abstract
View article
PDF
It is a prominent idea that cognitive control mediates conflict adaptation, in that response conflict in a previous trial triggers control adjustments that reduce conflict in a current trial. In the present EEG study, we investigated the dynamics of cognitive control in a response-priming task by examining the effects of previous trial conflict on intertrial and current trial oscillatory brain activities, both on the electrode and the source level. Behavioral results showed conflict adaptation effects for RTs and response accuracy. Physiological results showed sustained intertrial effects in left parietal theta power, originating in the left inferior parietal cortex, and midcentral beta power, originating in the left and right (pre)motor cortex. Moreover, physiological analysis revealed a current trial conflict adaptation effect in midfrontal theta power, originating in the ACC. Correlational analyses showed that intertrial effects predicted conflict-induced midfrontal theta power in currently incongruent trials. In addition, conflict adaptation effects in midfrontal theta power and RTs were positively related. Together, these findings point to a dynamic cognitive control system that, as a function of previous trial type, up- and down-regulates attention and preparatory motor activities in anticipation of the next trial.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (2): 215–225.
Published: 01 February 2008
Abstract
View article
PDF
If subjects are required to name the color of the word red printed in blue ink, interference between word meaning and ink color occurs, which slows down reaction time. This effect is well known as the Stroop effect. It is still an unresolved issue how the brain deals with interference in this type of task. To explore this question, an electroencephalogram (EEG) study was carried out. By analyzing several measures of EEG activity, two main findings emerged. First, the event-related potential (ERP) showed increased fronto-central negativity in a time window around 400 msec for incongruent items in contrast to congruent and neutral items. Source localization analysis revealed that a source in the anterior cingulate cortex (ACC) contributed most to the difference. Second, time-frequency analysis showed that theta oscillations (4–7 Hz) in the ACC increased linearly with increasing interference and that phase coupling between the ACC and the left prefrontal cortex was longer persistent for incongruent items compared to congruent and neutral items. These effects occurred at a time window around 600 msec. We conclude that interference between color naming and word meaning in the Stroop task manifests itself at around 400 msec and mainly activates the ACC. Thereafter, sustained phase coupling between the ACC and the prefrontal cortex occurs, which most likely reflects the engagement of cognitive control mechanisms.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (1): 65–75.
Published: 01 January 2008
Abstract
View article
PDF
In the orienting of attention paradigm, inhibition of return (IOR) refers to slowed responses to targets presented at the same location as a preceding stimulus. No consensus has yet been reached regarding the stages of information processing underlying the inhibition. We report the results of an electro-encephalogram experiment designed to examine the involvement of response inhibition in IOR. Using a cue-target design and a target-target design, we addressed the role of response inhibition in a location discrimination task. Event-related changes in beta power were measured because oscillatory beta activity has been shown to be related to motor activity. Bilaterally located sources in the primary motor cortex showed event-related beta desynchronization (ERD) both at cue and target presentation and a rebound to event-related beta synchronization (ERS) after movement execution. In both designs, IOR arose from an enhancement of beta synchrony. IOR was related to an increase of beta ERS in the target-target design and to a decrease of beta ERD in the cue-target design. These results suggest an important role of response inhibition in IOR.