Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Bettina Pollok
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (5): 828–840.
Published: 01 May 2008
Abstract
View article
PDF
The posterior parietal cortex and the cerebellum are assumed to contribute to anticipatory motor control. Thus, it is reasonable that these areas act as a functional unit. To identify a neural signature of anticipatory motor control, 11 healthy volunteers performed a bimanual finger-tapping task with respect to isochronous (i.e., regular) and randomized (i.e., irregular) auditory pacing. Neuromagnetic activity was recorded using a 122-channel whole-head neuromagnetometer. Functional interaction between spatially distributed brain areas was determined by measures of tap-related phase synchronization. Assuming that (i) the cerebellum predicts sensory events by an internal model and (ii) the PPC maintains this prediction, we hypothesized that functional interaction between both structures varies depending on the predictability of the pacing signal. During isochronous pacing, functional connectivity within a cerebello-diencephalic-parietal network before tap onset was evident, suggesting anticipatory motor control. During randomized pacing, however, functional connectivity after tap onset was increased within a parietal-cerebellar loop, suggesting mismatch detection and update of the internal model. Data of the present study imply that anticipatory motor control is implemented in a network-like manner. Our data agree well with the hypothesis that functional connectivity in a cerebello-diencephalic-parietal loop might be crucial for anticipatory motor control, whereas parietal-cerebellar interaction might be critical for feedback processing.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (4): 704–719.
Published: 01 April 2007
Abstract
View article
PDF
Compared to unimanual task execution, simultaneous bimanual tapping tasks are associated with a significantly reduced intertap variability. It has been suggested that this bimanual advantage is based on the integration of timing signals which otherwise control each hand independently. Although its functional and anatomic foundations are poorly understood, functional coupling between cerebellar hemispheres might be behind this process. Because the execution of fast alternating fingertaps increases intertap variability, it is hypothesized that intercerebellar coupling is reduced in such tasks. To shed light on the functional significance of intercerebellar coupling, 14 right-handed subjects performed unimanual right, bimanual simultaneous, and bimanual alternating synchronization tasks with respect to a regular auditory pacing signal. In all conditions, within-hand intertap interval was 500 msec. Continuous neuromagnetic activity, using a 122-channel wholehead neuromagnetometer and surface electromyograms of the first dorsal interosseus muscle of both hands, were recorded. For data analysis, we used the analysis tool Dynamic Imaging of Coherent Sources , which provides a tomographic map of cerebromuscular and cerebrocerebral coherence. Analysis revealed a bilateral cerebello-thalamo-cortical network oscillating at alpha (8–12 Hz) and beta (13–24 Hz) frequencies associated with bimanual synchronization. In line with our hypothesis, coupling between cerebellar hemispheres was restricted to simultaneous task execution. This result implies that intercerebellar coupling is key for the execution of simultaneous bimanual movements. Although the criticality of a specific magneto-encephalography pattern for behavioral changes should be interpreted with caution, data suggest that intercerebellar coupling possibly represents the functional foundation of the bimanual advantage.