Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Bhavin R. Sheth
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (7): 1269–1279.
Published: 01 July 2009
Abstract
View article
PDF
Pioneering neuroimaging studies on insight have revealed neural correlates of the emotional “Aha!” component of the insight process, but neural substrates of the cognitive component, such as problem restructuring (a key to transformative reasoning), remain a mystery. Here, multivariate electroencephalogram signals were recorded from human participants while they solved verbal puzzles that could create a small-scale experience of cognitive insight. Individuals responded as soon as they reached a solution and provided a rating of subjective insight. For unsolved puzzles, hints were provided after 60 to 90 sec. Spatio-temporal signatures of brain oscillations were analyzed using Morlet wavelet transform followed by exploratory parallel-factor analysis. A consistent reduction in beta power (15–25 Hz) was found over the parieto-occipital and centro-temporal electrode regions on all four conditions—(a) correct (vs. incorrect) solutions, (b) solutions without (vs. with) external hint, (c) successful (vs. unsuccessful) utilization of the external hint, and d) self-reported high (vs. low) insight. Gamma band (30–70 Hz) power was increased in right fronto-central and frontal electrode regions for conditions (a) and (c). The effects occurred several (up to 8) seconds before the behavioral response. Our findings indicate that insight is represented by distinct spectral, spatial, and temporal patterns of neural activity related to presolution cognitive processes that are intrinsic to the problem itself but not exclusively to one's subjective assessment of insight.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (2): 339–350.
Published: 01 March 2004
Abstract
View article
PDF
Remembering where objects are in space is fundamental to adaptive behavior. Little is known about how intact humans combine information from intrinsic (egocentric) and extrinsic (exocentric, allocentric, or landmark-based) coordinate systems to locate objects. Using a simple location estimation paradigm, this study finds that we mostly remember position in extrinsic coordinates. Intrinsic-coordinate-based mapping of space is less precise in the presence of landmarks or extrinsic cues than in their absence. Thus, not only do extrinsic frames of reference dominate internal representations of space, they suppress intrinsic-based representations as well. We speculate that this dominance-suppression hierarchy undercuts intersystem conflicts and underlies a single, undissociated spatial map in intact humans.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (2): 173–184.
Published: 15 February 2003
Abstract
View article
PDF
Neurophysiological and behavioral studies have shown that perception and memory share neural substrates and functional properties. But are perception and the active working memory of a stimulus one and the same? To address this question in the spatial domain, we compared the percept and the working memory of the position of a target stimulus embedded within a surround of moving dots. Motion in a particular direction after the target's offset biased the memory of target location in the same direction. However, motion simultaneous with a high-contrast, perceptually strong target biased the percept of target location in the opposite direction. Thus, perception and working memory can be modified by motion in qualitatively different ways. Manipulations to strengthen the memory trace had no effect on the direction of the memory bias, indicating that memory signal strength can never equal that of the percept of a strong stimulus. However, the percept of a weak stimulus was biased in the direction of motion. Thus, although perception and working memory are not inherently different, they can differ behaviorally depending on the strength of the perceptual signal. Understanding how a changing surround biases neural representations in general, and postsensory processes in particular, can help one understand past reports of spatial mislocalization.