Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Boris Burle
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (5): 885–899.
Published: 01 May 2023
FIGURES
| View All (6)
Abstract
View article
PDF
Although the benefit of temporal predictability for behavior is long-established, recent studies provide evidence that knowing when an important event will occur comes at the cost of greater impulsivity. Here, we investigated the neural basis of inhibiting actions to temporally predictable targets using an EEG–EMG method. In our temporally cued version of the stop-signal paradigm (two-choice task), participants used temporal information delivered by a symbolic cue to speed their responses to the target. In a quarter of the trials, an auditory signal indicated that participants had to inhibit their actions. Behavioral results showed that although temporal cues speeded RTs, they also impaired the ability to stop actions as indexed by longer stop-signal reaction time. In line with behavioral benefits of temporal predictability, EEG data demonstrated that acting at temporally predictable moments facilitated response selection at the cortical level (reduced frontocentral negativity just before the response). Likewise, activity of the motor cortex involved in suppression of incorrect response hand was stronger for temporally predictable events. Thus, by keeping an incorrect response in check, temporal predictability likely enabled faster implementation of the correct response. Importantly, there was no effect of temporal cues on the EMG-derived index of online, within-trial inhibition of subthreshold impulses. This result shows that although participants were more prone to execute a fast response to temporally predictable targets, their inhibitory control was, in fact, unaffected by temporal cues. Altogether, our results demonstrate that greater impulsivity when responding to temporally predictable events is paralleled by enhanced neural motor processes involved in response selection and implementation rather than impaired inhibitory control.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (2): 273–289.
Published: 05 January 2022
FIGURES
| View All (7)
Abstract
View article
PDF
The brain can anticipate the time of imminent events to optimize sensorimotor processing. Yet, there can be behavioral costs of temporal predictability under situations of response conflict. Here, we sought to identify the neural basis of these costs and benefits by examining motor control processes in a combined EEG–EMG study. We recorded electrophysiological markers of response activation and inhibition over motor cortex when the onset-time of visual targets could be predicted, or not, and when responses necessitated conflict resolution, or not. If stimuli were temporally predictable but evoked conflicting responses, we observed increased intertrial consistency in the delta range over the motor cortex involved in response implementation, perhaps reflecting increased response difficulty. More importantly, temporal predictability differentially modulated motor cortex activity as a function of response conflict before the response was even initiated. This effect occurred in the hemisphere ipsilateral to the response, which is involved in inhibiting unwanted actions. If target features all triggered the same response, temporal predictability increased cortical inhibition of the incorrect response hand. Conversely, if different target features triggered two conflicting responses, temporal predictability decreased inhibition of the incorrect, yet prepotent, response. This dissociation reconciles the well-established behavioral benefits of temporal predictability for nonconflicting responses as well as its costs for conflicting ones by providing an elegant mechanism that operates selectively over the motor cortex involved in suppressing inappropriate actions just before response initiation. Taken together, our results demonstrate that temporal information differentially guides motor activity depending on response choice complexity.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (10): 1501–1521.
Published: 01 October 2016
FIGURES
| View All (14)
Abstract
View article
PDF
A current challenge for decision-making research is in extending models of simple decisions to more complex and ecological choice situations. Conflict tasks (e.g., Simon, Stroop, Eriksen flanker) have been the focus of much interest, because they provide a decision-making context representative of everyday life experiences. Modeling efforts have led to an elaborated drift diffusion model for conflict tasks (DMC), which implements a superimposition of automatic and controlled decision activations. The DMC has proven to capture the diversity of behavioral conflict effects across various task contexts. This study combined DMC predictions with EEG and EMG measurements to test a set of linking propositions that specify the relationship between theoretical decision-making mechanisms involved in the Simon task and brain activity. Our results are consistent with a representation of the superimposed decision variable in the primary motor cortices. The decision variable was also observed in the EMG activity of response agonist muscles. These findings provide new insight into the neurophysiology of human decision-making. In return, they provide support for the DMC model framework.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (6): 1419–1436.
Published: 01 June 2011
FIGURES
| View All (5)
Abstract
View article
PDF
The concept of “monitoring” refers to our ability to control our actions on-line. Monitoring involved in speech production is often described in psycholinguistic models as an inherent part of the language system. We probed the specificity of speech monitoring in two psycholinguistic experiments where electroencephalographic activities were recorded. Our focus was on a component previously reported in nonlinguistic manual tasks and interpreted as a marker of monitoring processes. The error negativity (Ne, or error-related negativity), thought to originate in medial frontal areas, peaks shortly after erroneous responses. A component of seemingly comparable properties has been reported, after errors, in tasks requiring access to linguistic knowledge (e.g., speech production), compatible with a generic error-detection process. However, in contrast to its original name, advanced processing methods later revealed that this component is also present after correct responses in visuomotor tasks. Here, we reported the observation of the same negativity after correct responses across output modalities (manual and vocal responses). This indicates that, in language production too, the Ne reflects on-line response monitoring rather than error detection specifically. Furthermore, the temporal properties of the Ne suggest that this monitoring mechanism is engaged before any auditory feedback. The convergence of our findings with those obtained with nonlinguistic tasks suggests that at least part of the monitoring involved in speech production is subtended by a general-purpose mechanism.
Journal Articles
Wery P. M. van den Wildenberg, Borís Burle, Franck Vidal, Maurits W. van der Molen, K. Richard Ridderinkhof ...
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (2): 225–239.
Published: 01 February 2010
FIGURES
| View All (5)
Abstract
View article
PDF
The ability to stop ongoing motor responses in a split-second is a vital element of human cognitive control and flexibility that relies in large part on prefrontal cortex. We used the stop-signal paradigm to elucidate the engagement of primary motor cortex (M1) in inhibiting an ongoing voluntary motor response. The stop-signal paradigm taps the ability to flexibly countermand ongoing voluntary behavior upon presentation of a stop signal. We applied single-pulse TMS to M1 at several intervals following the stop signal to track the time course of excitability of the motor system related to generating and stopping a manual response. Electromyography recorded from the flexor pollicis brevis allowed quantification of the excitability of the corticospinal tract and the involvement of intracortical GABA B ergic circuits within M1, indexed respectively by the amplitude of the motor-evoked potential and the duration of the late part of the cortical silent period (SP). The results extend our knowledge of the neural basis of inhibitory control in three ways. First, the results revealed a dynamic interplay between response activation and stopping processes at M1 level during stop-signal inhibition of an ongoing response. Second, increased excitability of inhibitory interneurons that drives SP prolongation was evident as early as 134 msec following the instruction to stop. Third, this pattern was followed by a stop-related reduction of corticospinal excitability implemented around 180 after the stop signal. These findings point to the recruitment of GABA B ergic intracortical inhibitory circuits within M1 in stop-signal inhibition and support the notion of stopping as an active act of control.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (9): 1637–1655.
Published: 01 September 2008
Abstract
View article
PDF
Our ability to detect and correct errors is essential for our adaptive behavior. The conflict-loop theory states that the anterior cingulate cortex (ACC) plays a key role in detecting the need to increase control through conflict monitoring. Such monitoring is assumed to manifest itself in an electroencephalographic (EEG) component, the “error negativity” ( N e or “error-related negativity” [ERN]). We have directly tested the hypothesis that the ACC monitors conflict through simulation and experimental studies. Both the simulated and EEG traces were sorted, on a trial-by-trial basis, as a function of the degree of conflict, measured as the temporal overlap between incorrect and correct response activations. The simulations clearly show that conflict increases as temporal overlap between response activation increases, whereas the experimental results demonstrate that the amplitude of the N e decreases as temporal overlap increases, suggesting that the ACC does not monitor conflict. At a functional level, the results show that the duration of the N e depends on the time needed to correct (partial) errors, revealing an “on-line” modulation of control on a very short time scale.