Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Bradley Duchaine
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (3): 614–622.
Published: 01 March 2015
FIGURES
| View All (5)
Abstract
View article
PDF
Human extrastriate cortex contains functional regions that are selective for particular categories such as faces, bodies, and places, but it is unclear whether these category-selective regions are necessary for normal perception of their preferred stimuli. One of these regions is the right fusiform body area (FBA), which is selectively involved in body perception. Do loss of the right fusiform gyrus and the absence of the right FBA necessarily lead to deficits in body perception? Here we report the performance of Galen, a brain-damaged patient who lost the right fusiform gyrus and has no right FBA, on eight tasks of body perception. Despite his lesion, Galen showed normal performance on all tasks. Galen's results demonstrate that damage to the right fusiform gyrus and the lack of the right FBA do not necessarily lead to persisting deficits in body perception.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (7): 1723–1740.
Published: 01 July 2011
FIGURES
| View All (8)
Abstract
View article
PDF
Regions of the occipital and temporal lobes, including a region in the fusiform gyrus (FG), have been proposed to constitute a “core” visual representation system for faces, in part because they show face selectivity and face repetition suppression. But recent fMRI studies of developmental prosopagnosics (DPs) raise questions about whether these measures relate to face processing skills. Although DPs manifest deficient face processing, most studies to date have not shown unequivocal reductions of functional responses in the proposed core regions. We scanned 15 DPs and 15 non-DP control participants with fMRI while employing factor analysis to derive behavioral components related to face identification or other processes. Repetition suppression specific to facial identities in FG or to expression in FG and STS did not show compelling relationships with face identification ability. However, we identified robust relationships between face selectivity and face identification ability in FG across our sample for several convergent measures, including voxel-wise statistical parametric mapping, peak face selectivity in individually defined “fusiform face areas” (FFAs), and anatomical extents (cluster sizes) of those FFAs. None of these measures showed associations with behavioral expression or object recognition ability. As a group, DPs had reduced face-selective responses in bilateral FFA when compared with non-DPs. Individual DPs were also more likely than non-DPs to lack expected face-selective activity in core regions. These findings associate individual differences in face processing ability with selectivity in core face processing regions. This confirms that face selectivity can provide a valid marker for neural mechanisms that contribute to face identification ability.