Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Cécile Grandin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (12): 2025–2046.
Published: 01 December 2013
FIGURES
Abstract
View article
PDF
The temporal poles (TPs) are among the brain regions that are often considered as the brain network sustaining our ability to understand other people's mental states or “Theory of Mind” (ToM). However, so far the functional role of the left and right TPs in ToM is still debated, and it is even not clear yet whether these regions are necessary for ToM. In this study, we tested whether the left TP is necessary for ToM by assessing the mentalizing abilities of a patient (C.M.) diagnosed with semantic dementia. Converging evidence from detailed MRI and 18 F-fluoro-2-deoxy- d -glucose PET examinations showed a massive atrophy of the left TP with the right TP being relatively unaffected. Furthermore, C.M.'s atrophy encompassed most regions of the left TP usually activated in neuroimaging studies investigating ToM. Given C.M.'s language impairments, we used a battery of entirely nonverbal ToM tasks. Across five tasks encompassing 100 trials, which probed the patient's ability to attribute various mental states (intentions, knowledge, and beliefs), C.M. showed a totally spared performance. This finding suggests that, despite its consistently observed activation in neuroimaging studies involving ToM tasks, the left TP is not necessary for ToM reasoning, at least in nonverbal conditions and as long as its right counterpart is preserved. Implications for understanding the social abilities of patients with semantic dementia are discussed.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (5): 860–874.
Published: 01 May 2010
FIGURES
Abstract
View article
PDF
Developmental dyscalculia (DD) is a deficit in number processing and arithmetic that affects 3–6% of schoolchildren. The goal of the present study was to analyze cerebral bases of DD related to symbolic number processing. Children with DD aged 9–11 years and matched children with no learning disability history were investigated using fMRI. The two groups of children were controlled for general cognitive factors, such as working memory, reading abilities, or IQ. Brain activations were measured during a number comparison task on pairs of Arabic numerals and a color comparison task on pairs of nonnumerical symbols. In each task, pairs of stimuli that were close or far on the relevant dimension were constituted. Brain activation in bilateral intraparietal sulcus (IPS) was modulated by numerical distance in controls but not in children with DD. Moreover, although the right IPS responded to numerical distance only, the left IPS was influenced by both numerical and color distances in control children. Our findings suggest that dyscalculia is associated with impairment in areas involved in number magnitude processing and, to a lesser extent, in areas dedicated to domain-general magnitude processing.