Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
C. J. Moore
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (4): 419–429.
Published: 15 May 2001
Abstract
View article
PDF
Functional neuroimaging was used to investigate how lesions to the Broca's area impair neuronal responses in remote undamaged cortical regions. Four patients with speech output problems, but relatively preserved comprehension, were scanned while viewing words relative to consonant letter strings. In normal subjects, this results in left lateralized activation in the posterior inferior frontal, middle temporal, and posterior inferior temporal cortices. Each patient activated normally in the middle temporal region but abnormally in the damaged posterior inferior frontal cortex and the undamaged posterior inferior temporal cortex. In the damaged frontal region, activity was insensitive to the presence of words but in the undamaged posterior inferior temporal region, activity decreased in the presence of words rather than increasing as it did in the normal individuals. The reversal of responses in the left posterior inferior temporal region illustrate the context-sensitive nature of the abnormality and that failure to activate the left posterior temporal region could not simply be accounted for by insufficient demands on the underlying function. We propose that, in normal individuals, visual word presentation changes the effective connectivity among reading areas and, in patients, posterior temporal responses are abnormal when they depend upon inputs from the damaged inferior frontal cortex. Our results serve to introduce the concept of dynamic diaschisis; the anatomically remote and context-sensitive effects of focal brain lesions. Dynamic diaschisis reveals abnormalities of functional integration that may have profound implications for neuropsychological inference, functional anatomy and, vicariously, cognitive rehabilitation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1999) 11 (4): 371–382.
Published: 01 July 1999
Abstract
View article
PDF
This paper demonstrates how functional imaging studies of neuropsychological patients can provide a way of determining which areas in a cognitive network are jointly necessary and sufficient. The approach is illustrated with an investigation of the neural system underlying semantic similarity judgments. Functional neuroimaging demonstrates that normal subjects activate left temporal, parietal, and inferior frontal cortices during this task relative to physical size judgments. Neuropsychology demonstrates that damage to the temporal and parietal regions results in semantic deficits, indicating that these areas are necessary for task performance. In contrast, damage to the inferior frontal cortex does not impair task performance, indicating that the inferior frontal cortex might not be necessary. However, there are two other possible accounts of intact performance following frontal lobe damage: (1) there is functional reorganization involving the right frontal cortex and (2) there is peri-infarct activity around the damaged left-hemisphere tissue. Functional imaging of the patient is required to discount these possibilities. We investigated a patient (SW), who was able to associate words and pictures on the basis of semantic relationships despite extensive damage to the left frontal, inferior parietal, and superior temporal cortices. Although SW showed peri-infarct activation in left extrasylvian temporal cortices, no activity was observed in either left or right inferior frontal cortices. These ªndings demonstrate that activity in extrasylvian temporo-parietal and medial superior frontal regions is sufªcient to perform semantic similarity judgments. In contrast, the left inferior frontal activations detected in each control subject appear not to be necessary for task performance. In conclusion, necessary and sufªcient brain systems can be delineated by functional imaging of brain-damaged patients who are not functionally impaired.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1997) 9 (6): 727–733.
Published: 01 November 1997
Abstract
View article
PDF
A number of previous functional neuroimaging studies have linked activation of the left inferior frontal gyms with semantic processing, yet damage to the frontal lobes does not critically impair semantic knowledge. This study distinguishes between semantic knowledge and the strategic processes required to make verbal decisions. Using positron emission tomography (PET), we identify the neural correlates of semantic knowledge by contrasting semantic decision on visually presented words to phonological decision on the same words. Both tasks involve identical stimuli and a verbal decision on central lingual codes (semantics and phonology), but the explicit task demands directed attention either to meaning or to the segmentation of phonology. Relative to the phonological task, the semantic task was associated with activations in left extrasylvian temporal cortex with the highest activity in the left temporal pole and a posterior region of the left middle temporal cortex (BA 39) close to the angular gyrus. The reverse contrast showed increased activity in both supramarginal gyri, the left precentral sulcus, and the cuneus with a trend toward enhanced activation in the inferior frontal cortex. These results fit well with neuropsychological evidence, associating semantic knowledge with the extrasylvian left temporal cortex and the segmentation of phonology with the perisylvian cortex.