Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-8 of 8
Carlo Caltagirone
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (2): 188–199.
Published: 01 February 2018
FIGURES
Abstract
View article
PDF
Although the role of the cerebellum in motor function is well recognized, its involvement in the lexical domain remains to be further elucidated. Indeed, it has not yet been clarified whether the cerebellum is a language structure per se or whether it contributes to language processing when other cognitive components (e.g., cognitive effort, working memory) are required by the language task. Neuromodulation studies on healthy participants have suggested that cerebellar transcranial direct current stimulation (tDCS) is a valuable tool to modulate cognitive functions. However, so far, only a single case study has investigated whether cerebellar stimulation enhances language recovery in aphasic individuals. In a randomized, crossover, double-blind design, we explored the effect of cerebellar tDCS coupled with language treatment for verb improvement in 12 aphasic individuals. Each participant received cerebellar tDCS (20 min, 2 mA) in four experimental conditions: (1) right cathodal and (2) sham stimulation during a verb generation task and (3) right cathodal and (4) sham stimulation during a verb naming task. Each experimental condition was run in five consecutive daily sessions over 4 weeks. At the end of treatment, a significant improvement was found after cathodal stimulation only in the verb generation task. No significant differences were present for verb naming among the two conditions. We hypothesize that cerebellar tDCS is a viable tool for recovery from aphasia but only when the language task, such as verb generation, also demands the activation of nonlinguistic strategies.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (5): 724–738.
Published: 01 May 2016
FIGURES
| View All (7)
Abstract
View article
PDF
Several studies have already shown that transcranial direct current stimulation (tDCS) is a useful tool for enhancing recovery in aphasia. However, no reports to date have investigated functional connectivity changes on cortical activity because of tDCS language treatment. Here, nine aphasic persons with articulatory disorders underwent an intensive language therapy in two different conditions: bilateral anodic stimulation over the left Broca's area and cathodic contralesional stimulation over the right homologue of Broca's area and a sham condition. The language treatment lasted 3 weeks (Monday to Friday, 15 sessions). In all patients, language measures were collected before (T0) and at the end of treatment (T15). Before and after each treatment condition (real vs. sham), each participant underwent a resting-state fMRI study. Results showed that, after real stimulation, patients exhibited the greatest recovery not only in terms of better accuracy in articulating the treated stimuli but also for untreated items on different tasks of the language test. Moreover, although after the sham condition connectivity changes were confined to the right brain hemisphere, real stimulation yielded to stronger functional connectivity increase in the left hemisphere. In conclusion, our data provide converging evidence from behavioral and functional imaging data that bilateral tDCS determines functional connectivity changes within the lesioned hemisphere, enhancing the language recovery process in stroke patients.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (10): 2878–2891.
Published: 01 October 2011
FIGURES
| View All (4)
Abstract
View article
PDF
Ventral occipito-temporal cortex is known to play a major role in visual object recognition. Still unknown is whether object familiarity and semantic domain are critical factors in its functional organization. Most models assume a functional locus where exemplars of familiar categories are represented: the structural description system. On the assumption that familiarity should modulate the effect of visual noise on form recognition, we attempted to individualize the structural description system by scanning healthy subjects while they looked at familiar (living and nonliving things) and novel 3-D objects, either with increasing or decreasing visual noise. Familiarity modulated the visual noise effect (particularly when familiar items were living things), revealing a substrate for the structural description system in right occipito-temporal cortex. These regions also responded preferentially to living as compared to nonliving items. Overall, these results suggest that living items are particularly reliant on the structural description system.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (2): 338–348.
Published: 01 February 2011
FIGURES
| View All (8)
Abstract
View article
PDF
The cerebellum is involved in motor learning of new procedures both during actual execution of a motor task and during observational training. These processes are thought to depend on the activity of a neural network that involves the lateral cerebellum and primary motor cortex (M1). In this study, we used a twin-coil TMS technique to investigate whether execution and observation of a visuomotor procedural learning task is related to modulation of cerebello-motor connectivity. We observed that, at rest, a magnetic conditioning pulse applied over the lateral cerebellum reduced the motor-evoked potentials obtained by stimulating the contralateral M1, indicating activation of a cerebello-motor connection. Furthermore, during procedural learning, cerebellar stimulation resulted in selective facilitation, not inhibition, of contralateral M1 excitability. The effects were evident when motor learning was obtained by actual execution of the task or by observation, but they disappeared if procedural learning had already been acquired by previous observational training. These results indicate that changes in cerebello-motor connectivity occur in relation to specific phases of procedural learning, demonstrating a complex pattern of excitatory and inhibitory drives modulated across time.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (3): 554–570.
Published: 01 March 2010
FIGURES
| View All (6)
Abstract
View article
PDF
We carried out an fMRI study with a twofold purpose: to investigate the relationship between networks dedicated to semantic and visual processing and to address the issue of whether semantic memory is subserved by a unique network or by different subsystems, according to semantic category or feature type. To achieve our goals, we administered a word–picture matching task, with within-category foils, to 15 healthy subjects during scanning. Semantic distance between the target and the foil and semantic domain of the target–foil pairs were varied orthogonally. Our results suggest that an amodal, undifferentiated network for the semantic processing of living things and artifacts is located in the anterolateral aspects of the temporal lobes; in fact, activity in this substrate was driven by semantic distance, not by semantic category. By contrast, activity in ventral occipito-temporal cortex was driven by category, not by semantic distance. We interpret the latter finding as the effect exerted by systematic differences between living things and artifacts at the level of their structural representations and possibly of their lower-level visual features. Finally, we attempt to reconcile contrasting data in the neuropsychological and functional imaging literature on semantic substrate and category specificity.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (10): 1656–1663.
Published: 01 October 2007
Abstract
View article
PDF
Neuroimaging evidence increasingly supports the hypothesis that the same neural structures subserve the execution, imagination, and observation of actions. We used repetitive transcranial magnetic stimulation (rTMS) to investigate the specific roles of cerebellum and dorsolateral prefrontal cortex (DLPFC) in observational learning of a visuomotor task. Subjects observed an actor detecting a hidden sequence in a matrix and then performed the task detecting either the previously observed sequence or a new one. rTMS applied over the cerebellum before the observational training interfered with performance of the new sequence, whereas rTMS applied over the DLPFC interfered with performance of the previously observed one. When rTMS applied over cerebellar or prefrontal site was delivered after the observational training, no influence was observed on the execution of the task. These results furnish new insights on the neural circuitry involved in the single component of observational learning and allow us to hypothesize that cerebellum and DLPFC interact in planning actions, the former by permitting the acquisition of procedural competencies and the latter by providing flexibility among already acquired solutions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (9): 1605–1611.
Published: 01 November 2004
Abstract
View article
PDF
Increasing evidence suggests cerebellar involvement in procedural learning. To further analyze its role and to assess whether it has a lateralized influence, in the present study we used a repetitive transcranial magnetic stimulation interference approach in a group of normal subjects performing a serial reaction time task. We studied 36 normal volunteers: 13 subjects underwent repetitive transcranial magnetic stimulation on the left cerebellum and performed the task with the right (6 subjects) or left (7 subjects) hand; 10 subjects underwent repetitive transcranial magnetic stimulation on the right cerebellum and performed the task with the hand ipsilateral (5 subjects) or contralateral (5 subjects) to the stimulation; another 13 subjects served as controls and were not submitted to repetitive transcranial magnetic stimulation; 7 of them performed the task with the right hand and 6 with the left hand. The main results show that interference with the activity of the lateral cerebellum induces a significant decrease of procedural learning: Interference with the right cerebellar hemisphere activity induces a significant decrease in procedural learning regardless of the hand used to perform the serial reaction time task, whereas left cerebellar hemisphere activity seems more linked with procedural learning through the ipsilateral hand. In conclusion, the present study shows for the first time that a transient interference with the functions of the cerebellar cortex results in an impairment of procedural learning in normal subjects and it provides new evidences for interhemispheric differences in the lateral cerebellum.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (4): 618–628.
Published: 15 May 2002
Abstract
View article
PDF
In an fMRI experiment, subjects saw a written noun and made three distinct decisions in separate sessions: Is its grammatical gender masculine or feminine (grammatical feature task)? Is it an animal or an artifact (semantic task)? Does it contain a /tch/ or a /k/ sound (phonological task)? Relative to the other experimental conditions, the grammatical feature task activated areas of the left middle and inferior frontal gyrus and of the left middle and inferior temporal gyrus. These activations fit in well with neuropsychological studies that document the correlation between left frontal lesions and damage to morphological processes in agrammatism, and the correlation between left temporal lesions and failure to access lexical representations in anomia. Taken together, these data suggest that grammatical gender is processed in a left fronto-temporal network. In addition, the observation that the grammatical feature task and the phonology task activated neighboring but distinct regions of the left frontal lobe provides a plausible neuroanatomical basis for the systematic occurrence of phonological errors in aphasic subjects with morphological deficits.