Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Carlo Miniussi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (5): 916–926.
Published: 01 May 2008
Abstract
View article
PDF
We investigated the role played by the right parietal lobe in object identification and the ability to interpret object orientation, using transcranial magnetic stimulation (TMS) to momentarily interfere with ongoing cortical activity. Short trains of TMS pulses (12 Hz) were applied to a site overlying the right intraparietal sulcus/inferior parietal lobe while subjects performed either object identification tasks (i.e., picture-word verification and categorizing objects as natural or manufactured) or object orientation judgment tasks (i.e., picture-arrow verification and deciding whether an object was rotated clockwise or counterclockwise). Across different tasks, right parietal TMS impaired orientation judgments, but facilitated object identification, compared to TMS applied to a brain vertex control site. These complementary findings demonstrate that the right parietal lobe—a region belonging to the dorsal visual stream—is critical for processing the spatial attributes of objects, but not their identity. The observed improvement in object recognition, however, suggests an indirect role for the right parietal lobe in object recognition. We propose that this involves the creation of a spatial reference frame for the object, which allows interaction with the object and the individuation of specific viewing instances.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (4): 734–740.
Published: 01 April 2008
Abstract
View article
PDF
Transcranial magnetic stimulation (TMS) is a popular tool for mapping perceptual and cognitive processes in the human brain. It uses a magnetic field to stimulate the brain, modifying ongoing activity in neural tissue under the stimulating coil, producing an effect that has been likened to a “virtual lesion.” However, research into the functional basis of this effect, essential for the interpretation of findings, lags behind its application. Acutely, TMS may disable neuronal function, thereby interrupting ongoing neural processes. Alternatively, the effects of TMS have been attributed to an injection of “neural noise,” consistent with its immediate and effectively random depolarization of neurons. Here we apply an added-noise paradigm to test these alternatives. We delivered TMS to the visual cortex and measured its effect on a simple visual discrimination task, while concurrently manipulating the level of image noise in the visual stimulus itself. TMS increased thresholds overall; and increasing the amount of image noise systematically increased discrimination thresholds. However, these two effects were not independent. Rather, TMS interacted multiplicatively with the image noise, consistent with a reduction in the strength of the visual signal. Indeed, in this paradigm, there was no evidence that TMS independently added noise to the visual process. Thus, our findings indicate that the “virtual lesion” produced by TMS can take the form of a loss of signal strength which may reflect a momentary interruption to ongoing neural processing.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (6): 855–861.
Published: 15 August 2003
Abstract
View article
PDF
Long-term, episodic memory processing is supposed to involve the prefrontal cortex asymmetrically. Here we investigate the role of the dorsolateral prefrontal cortex (DLPFC) in encoding and retrieval of semantically related or unrelated word pairs. Subjects were required to perform a task consisting of two parts: a study phase (encoding), in which word pairs were presented, and a test phase (retrieval), during which stimuli previously presented had to be recognized among other stimuli. Consistently with our previous findings using pictures, repetitive transcranial magnetic stimulation (rTMS) had a significant impact on episodic memory. The performance was significantly disrupted when rTMS was applied to the left or right DLPFC during encoding, and to the right DLPFC in retrieval, but only for unrelated word pairs. These results indicate that the nature of the material to be remembered interacts with the encoding–retrieval DLPFC asymmetry; moreover, the crucial role of DLPFC is evident only for novel stimuli.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (3): 315–323.
Published: 01 April 2003
Abstract
View article
PDF
A large number of imaging studies have identified a role for the posterior parietal lobe, in particular Brodmann's area 7 and the intraparietal sulcus (IPS), in mental rotation. Here we investigated whether neural activity in the posterior parietal lobe is essential for successful mental rotation performance by observing the effects of interrupting this activity during the execution of a mental rotation task. Repetitive transcranial magnetic stimulation (rTMS) was applied to posterior parietal locations estimated to overlie Brodmann's area 7 in the right and the left hemisphere, or to a posterior midline location (sham condition). In three separate experiments, rTMS (four pulses, 20 Hz) was delivered at these locations either 200–400, 400–600, or 600–800 msec after the onset of a mental rotation trial. Disrupting neural activity in the right parietal lobe interfered with task performance, but only when rTMS was delivered 400 to 600 msec after stimulus onset. Stimulation of the left parietal lobe did not reliably affect mental rotation performance at any of the time points investigated. The time-limited effect of rTMS was replicated in a fourth experiment that directly compared the effects of rTMS applied to the right parietal lobe either 200–400 or 400–600 msec into the mental rotation trial. The results indicate that the right superior posterior parietal lobe plays an essential role in mental rotation, consistent with its involvement in a variety of visuospatial and visuomotor transformations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (5): 869–877.
Published: 01 September 2000
Abstract
View article
PDF
To study the electrophysiological correlates of conscious vision, we recorded event-related potentials (ERPs) in a patient with partial unilateral visual extinction as a result of right-hemisphere damage. When, following bilateral presentations, contralesional stimuli were not perceived, there was an absence of the early attention-sensitive P1 (80-120 msec) and N1 (140-180 msec) components of the ERP response. In contrast, following unilateral presentations, or in those bilateral presentations in which contralesional stimuli were perceived (about 60%), these ERP components were present. These results provide novel evidence that extinction involves the stage of early focusing of attention and that the P1 and N1 components of visual ERPs are reliable physiological correlates of conscious vision.